

ASX ANNOUNCEMENT

ASX: KNG kingslandminerals.com.au

21 February 2024

Large, High-Grade Lithium Soil Anomaly Identified at Lake Johnston in WA

Exceptional assays of +200ppm LiO₂ over 6.5km x 3km and still open; Follow-up sampling underway to define drilling targets

HIGHLIGHTS

- Initial soil sampling delineates high grade +200 ppm Li₂O anomaly over 6.5km x 3.0km
- The mineralisation remains open along strike to the north and south
- New tenement application to the north to increase Lake Johnston Project area to 770km²
- Initial success warrants extending soil sampling program to cover the new tenement areas
- Infill and extensional soil sampling commenced to define drill targets
- Kingsland's primary focus remains on advancing the potentially world-class Leliyn Graphite Project in the Northern Territory with metallurgical test-work ongoing and the Maiden Mineral Resource on track for next month

Kingsland Minerals Ltd (ASX:KNG) is pleased to announce the discovery of a significant high-grade lithium and associated elements soil anomaly at its Lake Johnston Project in Western Australia.

The high-grade soil anomaly is extensive, covering an area of 6.5 km x 3.0 km based on the initial 500m x 200m sample spacing. The anomaly is open to the north and south. Soil sampling has resumed within E63/2068 to extend the high grade lithium soil anomaly.

Based on this initial success, Kingsland plans to extend the soil sampling program to cover the recently acquired ground directly to the north of E63/2068. This additional tenement increases the size of Kingsland's Lake Johnston Lithium Project to 770 km².

Kingsland Minerals Managing Director, Richard Maddocks said:

"These results show there is clearly huge lithium potential at Lake Johnston. We had strong evidence for the presence of pegmatites and lithium from sampling historic drill holes and this recent soil sampling program confirms the presence of a significant, extensive high-grade lithium anomaly in soils.

"In light of these outstanding results and the potential for pegmatite-hosted lithium mineralisation, we plan to define drill targets through soil sampling to identify the highest-grade areas.

"The Lake Johnston Lithium Project complements Kingsland's portfolio of future energy minerals and adds to the Leliyn Graphite Project and the Cleo Uranium Project in the Northern Territory."

Exploration Details

The soil sampling program commenced in early December, at the northern end of E63/2068. Samples were taken every 200m E-W on 500m spaced N-S lines. A total of 174 samples were collected. Samples were collected about 20cm below surface and the -80 mesh (0.18mm) fraction sieved and taken for assay. This program was curtailed by bushfires in the area and will recommence later in February 2024. Personnel are currently preparing to mobilise to site. Programs of Work (POW) have been submitted for potential air-core drilling to test the anomalies and there are current POW's for a program of RC drilling.

Figure 1 shows the sample points colour coded according to the Li₂O grade in ppm. The high grade +200 ppm contours (purple) display continuity in a north-south orientation and are open to the south and north. A suite of 66 elements were assayed and these are currently being analysed for lithium and pegmatite prospectivity using ratio analysis.

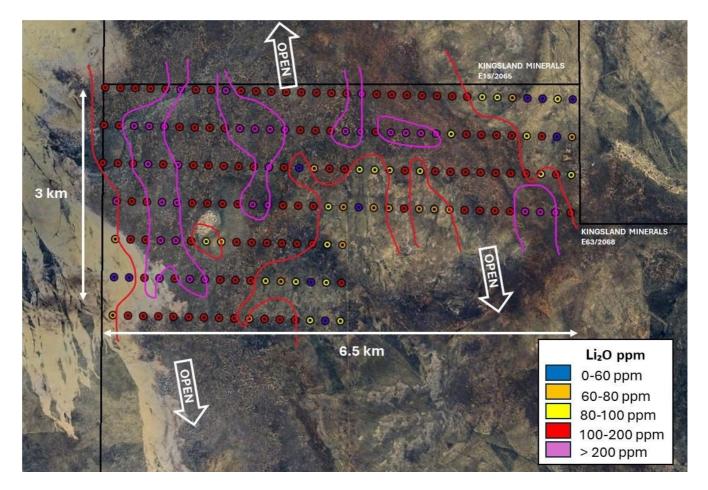


Figure 1: Soil sampling with 100 ppm Li₂O contour (red) and 200 ppm Li₂O contour (purple)

The geology of the area is historically poorly understood as much has been mapped as granite, but there are zones of greenstones intersected in historical drilling¹. The sampled area lies at the northern extent of the Lake Johnston Greenstone Belt (refer Figure 2) and there is potential for zones of greenstone material (mafics, ultramafics and sediments) to be faulted into the granites.

Tenement Acquisition

Kingsland Minerals has submitted an additional tenement application to the north of E63/2068. The location of Kingsland's tenements (granted and applications) are shown in Figure 2. Since the initial tenement application in 2021 Kingsland has grown the project in the prospective Lake Johnston area by more than 400%.

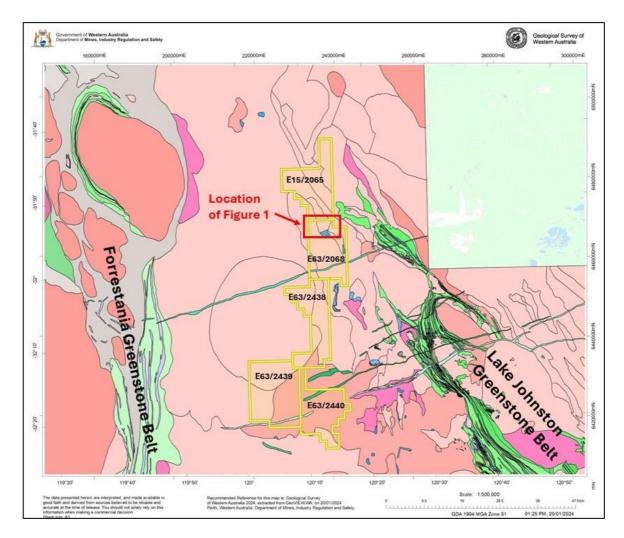


Figure 2: Location of Lake Johnston tenements in relation to Lake Johnston and Forrestania Greenstone Belts (GSWA 1:100000 Bedrock Geology)

¹ Refer ASX announcement 'Lake Johnston Lithium Project Update', released 10 January 2024

Tenement	Size km²	Granted
E63/2068	136.96	3-Sep-21
E63/2438	148.36	Application
E63/2439	197.47	Application
E63/2440	139.33	Application
E15/2065	148.87	Application

Table 1: Lake Johnston Lithium Project Tenement Details

Table 2: Soil Sampling Assay Details

Element	Li	Li₂O	Cr	Cs	К	Mg	Nb	Rb	Sn	Sr	Та
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
KNG001	73.7	159	161	3.97	15,400	6,370	0.61	145	2.25	34.5	0.011
KNG002	84	181	181	4.37	15,700	7,260	0.51	152	2.46	54.8	0.007
KNG003	71.8	155	154	4.04	16,000	7,060	0.46	133	2.20	86.5	0.003
KNG004	65.3	141	140	3.44	11,200	4,790	0.47	98.5	2.11	50.7	0.009
KNG005	59.5	128	131	3.03	8,770	3,350	0.46	89.4	2.02	27.7	0.013
KNG006	95.2	205	162	4.09	13,100	5,490	0.54	133	2.31	39.3	0.009
KNG007	84.2	181	151	3.88	13,600	5,110	0.62	130	2.07	28.3	0.011
KNG008	64.8	139	126	3.72	13,600	6,160	0.32	119	1.96	42.1	0.006
KNG009	95.5	206	167	4.17	13,300	5,280	0.67	131	2.31	28.8	0.008
KNG010	66.5	143	130	3.25	10,500	4,260	0.32	122	2.00	26.4	0.009
KNG011	69.4	149	146	4.69	17,200	7,530	0.25	172	2.11	62.2	0.006
KNG012	92	198	159	4.55	12,400	4,600	0.73	153	2.38	29.3	0.008
KNG013	83.4	180	128	4.42	9,600	2,640	0.91	117	1.86	214.0	0.031
KNG014	80.9	174	135	4.28	8,190	2,990	0.66	125	2.10	30.6	0.012
KNG015	81.3	175	130	4.54	13,400	5,180	0.43	155	2.09	42.4	0.009
KNG016	91	196	151	4.6	13,300	7,720	0.34	147	2.22	64.3	0.004
KNG017	62.2	134	127	3.68	8,340	3,750	0.39	124	2.17	19.6	0.009
KNG018	112	241	163	4.49	16,000	8,730	0.54	151	2.41	90.7	0.006
KNG019	87.6	189	159	4.39	12,000	6,200	0.38	144	2.41	45.8	0.006
KNG020	59.4	128	129	3.15	9,860	8,690	0.28	121	1.93	154.0	0.003
KNG021	91.8	198	200	4.91	9,840	5,640	0.54	148	2.93	38.3	0.004
KNG022	84.4	182	181	4.05	9,120	4,400	0.9	115	2.88	25.4	0.016
KNG023	82	177	174	4.12	8,440	3,870	0.64	102	2.69	21.4	0.007
KNG024	46.7	101	140	4.18	2,020	984	0.66	65.5	2.98	12.1	0.007
KNG025	49.9	107	152	4.28	2,180	1,020	0.77	64.4	3.06	12.8	0.006
KNG026	38.7	83	152	3.74	1,720	808	0.67	56.8	2.71	9.4	0.022
KNG027	41.4	89	134	3.36	1,450	800	0.77	45.7	2.69	10.5	0.004
KNG028	28.2	61	106	3.57	1,320	578	0.6	44	2.63	8.6	0.007
KNG029	27.4	59	151	3.06	1,850	809	0.65	45.8	2.66	10.9	0.01
KNG030	15.2	33	114	2.21	550	178	0.29	21.4	2.29	2.9	0.006
KNG031	38.3	82	149	3.54	1,050	569	0.46	30.5	3.27	11.0	0.01
KNG032	27.5	59	142	3.44	877	485	0.56	26.7	2.87	8.7	0.005
KNG033	69.6	150	146	3.91	12,900	5,090	0.65	124	2.73	36.0	0.005

Element	Li	Li₂O	Cr	Cs	К	Mg	Nb	Rb	Sn	Sr	Та
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
KNG034	75.6	163	121	3.07	8,240	2,980	0.38	107	2.13	33.0	0.006
KNG035	93.1	200	108	4.79	9,180	2,740	0.35	95.9	1.79	197.0	0.004
KNG036	108	232	149	4.63	12,800	6,020	0.35	131	2.15	60.1	0.006
KNG037	104	224	146	4.5	11,000	5,380	0.35	131	2.18	41.0	0.004
KNG038	75.8	163	118	4.02	12,100	5,880	0.32	126	1.89	42.2	0.012
KNG039	66.3	143	121	3.74	12,800	6,450	0.2	129	1.88	50.5	0.01
KNG040	91.9	198	146	4.82	13,800	7,170	0.33	139	2.09	45.0	0.01
KNG041	64.1	138	136	3.34	13,300	6,350	0.2	123	1.98	36.9	0.005
KNG042	96.9	209	165	4.48	14,600	6,550	0.44	150	2.42	38.1	0.016
KNG043	93.9	202	160	4.57	14,100	6,020	0.4	147	2.42	41.3	0.011
KNG044	105	226	154	4.78	10,800	4,980	0.38	156	2.49	29.5	0.008
KNG045	106	228	163	4.54	14,600	6,900	0.49	157	2.43	90.0	0.005
KNG046	71.5	154	123	3.04	9,030	3,760	0.23	108	1.86	23.8	0.006
KNG047	74.4	160	138	3.58	7,690	3,950	0.44	118	2.10	16.4	0.027
KNG048	76.7	165	155	4.3	4,740	3,010	0.56	96.4	2.44	14.3	0.017
KNG049	97	209	124	3.57	12,100	4,550	0.37	123	2.06	49.2	0.006
KNG050	95.8	206	119	3.82	10,600	4,040	0.46	123	1.95	45.4	0.005
KNG051	71.5	154	116	2.92	10,200	3,700	0.27	108	1.86	24.2	0.009
KNG052	97	209	159	3.88	8,330	5,310	0.39	109	2.21	32.7	0.005
KNG053	109	235	164	4.37	7,130	5,890	0.38	105	2.40	48.2	0.005
KNG054	105	226	181	4.56	8,710	5,500	0.45	119	2.68	31.3	0.003
KNG055	103	222	182	5.15	8,220	6,800	0.16	147	2.67	39.7	0.007
KNG056	45.9	99	132	3.67	8,640	9,680	0.24	107	1.95	110.0	0.01
KNG057	73.9	159	170	3.96	6,710	3,890	0.39	95.6	2.42	20.0	0.011
KNG058	69.2	149	147	4.2	8,980	6,740	0.29	109	2.14	52.2	0.002
KNG059	47.8	103	154	4.06	6,180	3,190	0.52	85	2.46	20.8	0.007
KNG060	75.2	162	161	4.11	6,640	3,870	0.41	99.2	2.47	18.8	0.008
KNG061	46	99	158	4.8	1,670	933	0.54	62.7	2.86	10.2	0.007
KNG062	52.6	113	180	4.96	1,470	780	0.48	50.7	3.19	12.6	0.007
KNG063	25.7	55	108	3.22	1,020	483	0.29	35.8	2.33	6.7	0.009
KNG064	36.3	78	108	3.79	2,060	1,010	0.57	69.3	2.57	11.7	0.008
KNG065	70.4	152	83	2.85	6,500	2,090	0.43	72.4	1.57	187.0	0.003
KNG066	70.7	152	95	3.5	6,650	2,320	0.51	84.1	1.76	150.0	0.002
KNG067	80.9	174	115	3.45	10,400	4,070	0.34	128	1.91	56.7	0.014
KNG068	97.3	209	141	4.25	11,200	5,760	0.46	135	2.27	47.7	0.007
KNG069	91	196	141	4.34	13,600	5,920	0.42	154	2.13	50.9	0.012
KNG070	99.2	214	154	4.2	15,200	7,030	0.4	144	2.23	69.8	0.005
KNG071	92.7	200	154	4.26	14,100	6,580	0.38	139	2.30	51.4	0.006
KNG072	64.4	139	130	3.43	14,500	6,600	0.24	130	2.08	65.6	0.007
KNG073	88.8	191	157	3.93	13,400	5,620	0.44	131	2.35	34.7	0.005
KNG074	55	118	116	2.81	14,700	7,030	0.3	115	1.81	47.6	0.012
KNG075	63.5	137	133	3.12	10,600	5,230	0.19	113	1.98	31.6	0.004
KNG076	97.4	210	183	4.18	10,200	5,110	0.44	126	2.62	22.0	0.009
KNG077	54.6	118	121	3.17	7,330	3,470	0.28	90.8	1.88	15.5	0.015

Element	Li	Li₂O	Cr	Cs	К	Mg	Nb	Rb	Sn	Sr	Та
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
KNG078	21.7	47	95	2.91	3,400	1,260	0.19	68.2	1.73	4.9	0.003
KNG079	33.4	72	105	2.82	1,600	775	0.23	52.8	1.97	5.1	0.003
KNG080	74.5	160	143	3.57	5,110	3,980	0.43	91.9	2.28	21.1	0.004
KNG081	52.9	114	128	2.97	6,330	4,050	0.22	86.4	1.87	16.6	0.008
KNG082	44.3	95	121	3.05	1,420	832	0.28	52.1	2.23	5.4	0.005
KNG083	42.5	91	128	3.69	1,710	910	0.39	59.7	2.47	12.6	0.015
KNG084	38.8	84	113	3.05	2,770	3,970	0.36	57.8	2.02	22.1	0.003
KNG085	56.9	122	114	2.84	6,540	3,320	0.38	95.7	2.04	30.0	0.007
KNG086	43.4	93	154	4.28	2,140	1,270	0.6	82.8	2.77	10.3	0.024
KNG087	55.8	120	174	4.1	3,540	2,120	0.6	83.1	2.80	15.8	0.006
KNG088	75.7	163	166	4.17	9,890	9,310	0.38	108	2.34	106.0	0.008
KNG089	63.1	136	139	3.73	14,200	10,100	0.36	127	1.99	126.0	0.01
KNG090	66.2	143	137	3.85	7,980	8,420	0.11	110	2.02	58.0	0.002
KNG091	65.9	142	157	3.84	6,000	3,230	0.38	105	2.31	16.0	0.022
KNG092	89.3	192	164	4.66	7,420	6,300	0.32	126	2.50	25.3	0.01
KNG093	75.1	162	145	3.84	5,750	3,390	0.53	94.9	2.43	16.5	0.003
KNG094	42.5	91	114	4.02	1,640	922	0.62	64.7	2.91	9.3	0.008
KNG095	47.9	103	108	5.11	3,740	1,630	1.12	125	3.64	15.6	0.012
KNG096	45.4	98	117	4.36	3,370	1,790	0.93	88.9	3.03	14.9	0.006
KNG097	100	215	159	4.46	14,600	6,310	0.47	189	2.62	50.0	0.003
KNG098	79.6	171	126	3.64	11,500	5,260	0.3	142	2.13	49.8	0.009
KNG099	90.2	194	149	4.07	9,910	4,050	0.45	130	2.44	25.8	0.008
KNG100	99	213	148	3.8	8,400	3,440	0.57	109	2.31	38.7	0.004
KNG101	120	258	179	4.61	11,400	4,870	0.65	157	2.78	50.1	0.007
KNG102	79	170	134	4.14	13,500	6,290	0.22	157	2.09	60.8	0.007
KNG103	54.6	118	91	2.64	13,500	12,500	0.31	104	1.20	429.0	0.003
KNG104	59.2	127	123	4.13	4,940	2,570	0.71	85.1	1.92	90.5	0.005
KNG105	45.8	99	121	3.26	3,400	1,290	0.48	75.1	2.04	14.4	0.012
KNG106	94	202	169	4.54	16,000	6,510	0.31	144	2.23	69.0	0.01
KNG107	110	237	196	4.2	13,200	6,430	0.55	127	2.37	52.1	0.004
KNG108	56	121	140	3.19	3,880	1,740	0.39	79.9	2.02	11.1	0.006
KNG109	50.9	110	142	3.45	4,640	2,350	0.58	97.2	2.14	10.8	0.015
KNG110	66.6	143	151	3.34	9,380	5,400	0.35	91.9	2.05	57.5	0.003
KNG111	39.5	85	116	2.82	9,030	4,220	0.32	97.5	1.88	42.6	0.011
KNG112	30.8	66	132	3.56	1,570	889	0.35	55.7	2.37	8.3	0.011
KNG113	19.6	42	116	2.87	904	343	0.25	37.5	2.00	3.8	0.002
KNG114	34.7	75	133	3.33	1,170	603	0.45	37.7	2.37	9.1	0.008
KNG115	28.7	62	94	3.07	1,730	759	0.36	47.5	2.11	15.6	0.004
KNG116	48.2	104	144	3.68	2,920	1,610	0.49	70.7	2.41	15.0	0.006
KNG117	32.7	70	114	3.07	4,190	2,390	0.44	87.5	2.07	25.5	0.012
KNG118	32.1	69	124	3.61	1,420	857	0.32	49.7	2.46	8.3	0.008
KNG119	34.6	74	158	3.91	1,230	689	0.5	41.7	2.63	10.4	0.005
KNG120	51.8	112	153	3.26	18,800	9,780	0.48	97	2.01	173.0	0.003
KNG121	68.2	147	130	2.95	13,700	5,080	0.37	92.9	1.94	155.0	0.004

Element	Li	Li₂O	Cr	Cs	К	Mg	Nb	Rb	Sn	Sr	Та
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
KNG122	83.4	180	154	4.1	16,500	8,250	0.74	149	2.33	127.0	0.028
KNG123	80.5	173	179	4.31	8,110	6,450	0.37	118	2.26	37.2	0.004
KNG124	101	217	183	4.5	6,770	5,320	0.51	119	2.41	27.7	0.004
KNG125	93.4	201	162	4.57	9,270	5,860	0.4	150	2.29	37.1	0.007
KNG126	105	226	170	5.17	14,700	11,200	0.51	159	2.27	92.1	0.011
KNG127	62.2	134	148	4.3	5,590	3,490	0.5	99.2	2.42	23.0	0.008
KNG128	35.1	76	133	3.76	1,980	1,010	0.79	61.3	2.56	18.4	0.011
KNG129	61.1	132	129	3.45	6,460	2,760	0.85	90.2	2.28	35.1	0.005
KNG130	89.1	192	190	5.41	19,900	9,430	0.39	228	2.75	67.8	0.017
KNG131	98.6	212	168	4.52	12,500	5,630	0.63	150	2.41	46.2	0.009
KNG132	95	205	148	4.03	12,800	5,850	0.48	151	2.28	52.9	0.014
KNG133	77	166	144	4.27	14,600	9,470	0.59	127	2.00	212.0	0.005
KNG134	41.8	90	132	4.51	16,300	2,270	0.44	59.8	1.58	434.0	0.004
KNG135	42	90	110	3.48	5,540	1,620	0.39	67.2	1.68	83.1	0.005
KNG136	53.2	115	131	3.73	6,090	2,010	0.84	76	2.14	87.7	0.007
KNG137	79.4	171	151	3.69	8,120	3,860	0.58	89.4	2.41	23.3	0.008
KNG138	64.6	139	115	3.51	10,600	7,170	0.4	94.1	2.14	87.5	0.008
KNG139	64.2	138	108	2.91	9,430	4,910	0.39	75.5	1.94	50.2	0.006
KNG140	55.8	120	106	2.81	9,910	5,030	0.39	71.7	1.93	50.3	0.005
KNG141	47.4	102	115	2.75	9,050	4,980	0.19	76	2.08	26.8	0.006
KNG142	41.4	89	118	3.91	7,850	5,930	0.39	76.8	2.16	24.7	0.002
KNG143	32.5	70	92	3.26	1,570	989	0.53	41.4	2.21	8.0	0.003
KNG222	28.2	61	140	3.47	1,260	504	0.64	38.3	2.67	7.0	0.011
KNG224	50.6	109	137	3.11	10,700	4,700	0.33	110	2.22	22.0	0.006
KNG225	64.4	139	147	3.2	11,000	5,680	0.49	100	2.23	25.3	0.006
KNG226	63.3	136	118	3.31	6,200	3,250	0.31	71.9	2.02	16.9	0.012
KNG227	72.6	156	137	3.61	9,590	5,220	0.32	108	2.18	22.1	0.01
KNG228	83.8	180	161	4.63	10,800	5,210	0.47	113	2.40	22.8	0.008
KNG229	59.4	128	116	3.74	10,100	6,400	0.23	95.2	1.92	54.3	0.003
KNG230	61.9	133	121	3.66	10,400	9,680	0.72	90	1.94	240.0	0.007
KNG231	29.4	63	87	2.69	5,310	3,740	0.24	65.5	1.62	36.3	0.004
KNG232	54.5	117	129	3.26	9,450	4,240	0.51	75.7	2.11	37.2	0.003
KNG233	56.9	122	126	3.13	15,700	8,630	0.36	90.4	2.05	85.4	0.004
KNG234	55.4	119	134	3.56	9,890	5,160	0.49	92.5	2.59	53.6	0.01
KNG235	42.8	92	129	3.06	6,800	4,740	0.39	78.9	2.06	19.3	0.004
KNG236	22.1	48	102	2.9	1,290	624	0.41	36.2	2.26	5.1	0.004
KNG237	38	82	126	2.66	7,480	6,660	0.43	68.6	2.07	28.6	0.004
KNG175	24.6	53	100	3.39	741	416	0.45	28	2.39	5.6	0.006
KNG176	25.2	54	118	3.09	870	197	0.47	30.1	2.37	5.6	0.009
KNG177	47.1	101	134	3.6	2,160	994	1.04	52.9	2.89	19.4	0.029
KNG178	103	222	116	3.16	5,780	2,260	1.67	71.6	2.25	36.6	0.01
KNG179	83.1	179	145	3.8	9,360	4,480	0.67	114	2.60	22.4	0.02
KNG180	102	220	164	3.96	8,480	4,240	0.6	101	2.49	27.3	0.013
KNG181	93.3	201	166	4.66	13,500	8,460	0.36	135	2.58	51.5	0.005

Li	Li₂O	Cr	Cs	К	Mg	Nb	Rb	Sn	Sr	Та
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
87.5	188	158	4.58	11,700	6,150	0.53	119	2.21	43.6	0.006
70.1	151	152	4.14	9,600	5,060	0.51	107	2.33	25.3	0.007
52.1	112	125	3.14	7,730	4,130	0.37	84.9	2.04	20.2	0.01
37.6	81	128	4.12	1,630	961	0.64	49.5	2.83	12.6	0.008
36.2	78	118	3.41	1,530	747	0.61	39.8	2.50	7.6	0.006
45.4	98	139	4.25	1,880	1,030	0.66	44.7	2.82	13.1	0.012
20.8	45	91	2.85	957	352	0.38	26	2.12	7.4	0.005
41.3	89	146	4.08	2,850	2,060	0.61	47.7	2.77	9.9	0.012
48.5	104	134	3	9,860	7,400	0.67	73.3	2.34	34.2	0.007
	ppm 87.5 70.1 52.1 37.6 36.2 45.4 20.8 41.3	ppm ppm 87.5 188 70.1 151 52.1 112 37.6 81 36.2 78 45.4 98 20.8 45 41.3 89	ppm ppm ppm 87.5 188 158 70.1 151 152 52.1 112 125 37.6 81 128 36.2 78 118 45.4 98 139 20.8 45 91 41.3 89 146 48.5 104 134	ppmppmppmppm87.51881584.5870.11511524.1452.11121253.1437.6811284.1236.2781183.4145.4981394.2520.845912.8541.3891464.0848.51041343	ppmppmppmppmppm87.51881584.5811,70070.11511524.149,60052.11121253.147,73037.6811284.121,63036.2781183.411,53045.4981394.251,88020.845912.8595741.3891464.082,850	ppm ppm ppm ppm ppm ppm 87.5 188 158 4.58 11,700 6,150 70.1 151 152 4.14 9,600 5,060 52.1 112 125 3.14 7,730 4,130 37.6 81 128 4.12 1,630 961 36.2 78 118 3.41 1,530 747 45.4 98 139 4.25 1,880 1,030 20.8 45 91 2.85 957 352 41.3 89 146 4.08 2,850 2,060 48.5 104 134 3 9,860 7,400	ppm ppm <th>ppm ppm ppm<th>ppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2170.11511524.149,6005,0600.511072.3352.11121253.147,7304,1300.3784.92.0437.6811284.121,6309610.6449.52.8336.2781183.411,5307470.6139.82.5045.4981394.251,8801,0300.6644.72.8220.845912.859573520.38262.1241.3891464.082,8502,0600.6147.72.7748.510413439,8607,4000.6773.32.34</th><th>ppmppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2143.670.11511524.149,6005,0600.511072.3325.352.11121253.147,7304,1300.3784.92.0420.237.6811284.121,6309610.6449.52.8312.636.2781183.411,5307470.6139.82.507.645.4981394.251,8801,0300.6644.72.8213.120.845912.859573520.38262.127.441.3891464.082,8502,0600.6147.72.779.948.510413439,8607,4000.6773.32.3434.2</th></th>	ppm ppm <th>ppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2170.11511524.149,6005,0600.511072.3352.11121253.147,7304,1300.3784.92.0437.6811284.121,6309610.6449.52.8336.2781183.411,5307470.6139.82.5045.4981394.251,8801,0300.6644.72.8220.845912.859573520.38262.1241.3891464.082,8502,0600.6147.72.7748.510413439,8607,4000.6773.32.34</th> <th>ppmppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2143.670.11511524.149,6005,0600.511072.3325.352.11121253.147,7304,1300.3784.92.0420.237.6811284.121,6309610.6449.52.8312.636.2781183.411,5307470.6139.82.507.645.4981394.251,8801,0300.6644.72.8213.120.845912.859573520.38262.127.441.3891464.082,8502,0600.6147.72.779.948.510413439,8607,4000.6773.32.3434.2</th>	ppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2170.11511524.149,6005,0600.511072.3352.11121253.147,7304,1300.3784.92.0437.6811284.121,6309610.6449.52.8336.2781183.411,5307470.6139.82.5045.4981394.251,8801,0300.6644.72.8220.845912.859573520.38262.1241.3891464.082,8502,0600.6147.72.7748.510413439,8607,4000.6773.32.34	ppmppmppmppmppmppmppmppmppmppmppm87.51881584.5811,7006,1500.531192.2143.670.11511524.149,6005,0600.511072.3325.352.11121253.147,7304,1300.3784.92.0420.237.6811284.121,6309610.6449.52.8312.636.2781183.411,5307470.6139.82.507.645.4981394.251,8801,0300.6644.72.8213.120.845912.859573520.38262.127.441.3891464.082,8502,0600.6147.72.779.948.510413439,8607,4000.6773.32.3434.2

Table 3: Soil Sample Locations

	East MGA94	North MGA94
Sample ID	Z51J	Z51J
KNG001	233600	6469000
KNG002	233800	6469000
KNG003	234000	6469000
KNG004	234200	6469000
KNG005	234400	6469000
KNG006	234600	6469000
KNG007	234800	6469000
KNG008	235000	6469000
KNG009	235200	6469000
KNG010	235400	6469000
KNG011	235600	6469000
KNG012	235800	6469000
KNG013	236000	6469000
KNG014	236200	6469000
KNG015	236400	6469000
KNG016	236600	6469000
KNG017	236800	6469000
KNG018	237000	6469000
KNG019	237200	6469000
KNG020	237400	6469000
KNG021	237600	6469000
KNG022	237800	6469000
KNG023	238000	6469000
KNG024	238200	6469000
KNG025	238400	6469000
KNG026	238600	6469000
KNG027	238800	6469000
KNG028	239000	6469000
KNG029	239200	6469000
KNG030	239400	6469000
KNG031	239600	6469000
KNG032	239800	6469000

Commite ID	East MGA94	North MGA94
Sample ID	Z51J	Z51J
KNG033	233600	6468500
KNG034	233800	6468500
KNG035	234000	6468500
KNG036	234200	6468500
KNG037	234400	6468500
KNG038	234600	6468500
KNG039	234800	6468500
KNG040	235000	6468500
KNG041	235200	6468500
KNG042	235400	6468500
KNG043	235600	6468500
KNG044	235800	6468500
KNG045	236000	6468500
KNG046	236200	6468500
KNG047	236400	6468500
KNG048	236600	6468500
KNG049	236800	6468500
KNG050	237000	6468500
KNG051	237200	6468500
KNG052	237400	6468500
KNG053	237600	6468500
KNG054	237800	6468500
KNG055	238000	6468500
KNG056	238200	6468500
KNG057	238400	6468500
KNG058	238600	6468500
KNG059	238800	6468500
KNG060	239000	6468500
KNG061	239200	6468500
KNG062	239400	6468500
KNG063	239600	6468500
KNG064	239800	6468500
KNG065	233600	6468000
KNG066	233800	6468000
KNG067	234000	6468000
KNG068	234200	6468000
KNG069	234400	6468000
KNG070	234600	6468000
KNG071	234800	6468000
KNG072	235000	6468000
KNG073	235200	6468000
KNG074	235400	6468000
KNG075	235600	6468000
KNG076	235800	6468000

Sample ID	East MGA94 Z51J	North MGA94 Z51J
Sample ID KNG077	236000	6468000
KNG077		
	236200	6468000
KNG079	236400	6468000
KNG080	236600	6468000
KNG081	236800	6468000
KNG082	237000	6468000
KNG083	237200	6468000
KNG084	237400	6468000
KNG085	237600	6468000
KNG086	237800	6468000
KNG087	238000	6468000
KNG088	238200	6468000
KNG089	238400	6468000
KNG090	238600	6468000
KNG091	238800	6468000
KNG092	239000	6468000
KNG093	239200	6468000
KNG094	239400	6468000
KNG095	239600	6468000
KNG096	239800	6468000
KNG097	233800	6467500
KNG098	234000	6467500
KNG099	234200	6467500
KNG100	234400	6467500
KNG101	234600	6467500
KNG102	234800	6467500
KNG103	235000	6467500
KNG104	235200	6467500
KNG105	235400	6467500
KNG106	235600	6467500
KNG107	235800	6467500
KNG108	236000	6467500
KNG109	236200	6467500
KNG110	236400	6467500
KNG111	236600	6467500
KNG111 KNG112	236800	6467500
KNG112 KNG113	237000	6467500
KNG113 KNG114	237000	6467500
KNG114 KNG115	237200	6467500
KNG116	237600	6467500
KNG117	237800	6467500
KNG118	238000	6467500
KNG119	238200	6467500
KNG120	238400	6467500

Sample ID	East MGA94 Z51J	North MGA94 Z51J
KNG121	238600	6467500
KNG122	238800	6467500
KNG123	239000	6467500
KNG124	239200	6467500
KNG125	239400	6467500
KNG126	239600	6467500
KNG127	239800	6467500
KNG128	233800	6467000
KNG129	234000	6467000
KNG130	234200	6467000
KNG131	234400	6467000
KNG132	234600	6467000
KNG133	234800	6467000
KNG134	235000	6467000
KNG135	235200	6467000
KNG136	235400	6467000
KNG137	235600	6467000
KNG138	235800	6467000
KNG139	236000	6467000
KNG140	236200	6467000
KNG141	236400	6467000
KNG142	236600	6467000
KNG143	236800	6467000
KNG175	233800	6466500
KNG176	234000	6466500
KNG177	234200	6466500
KNG178	234400	6466500
KNG179	234600	6466500
KNG180	234800	6466500
KNG181	235000	6466500
KNG182	235200	6466500
KNG183	235400	6466500
KNG184	235600	6466500
KNG185	235800	6466500
KNG186	236000	6466500
KNG187	236200	6466500
KNG188	236400	6466500
KNG189	236600	6466500
KNG190	236800	6466500
KNG222	233800	6466000
KNG224	234200	6466000
KNG225	234400	6466000
KNG226	234600	6466000
KNG227	234800	6466000

	East MGA94	North MGA94
Sample ID	Z51J	Z51J
KNG228	235000	6466000
KNG229	235200	6466000
KNG230	235400	6466000
KNG231	235600	6466000
KNG232	235800	6466000
KNG233	236000	6466000
KNG234	236200	6466000
KNG235	236400	6466000
KNG236	236600	6466000
KNG237	236800	6466000

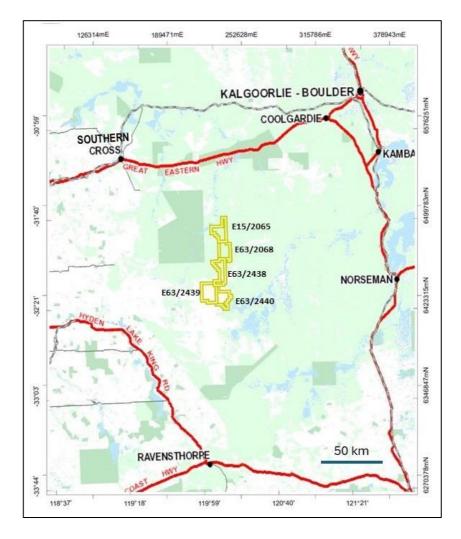


Figure 3: Location of Lake Johnston Lithium Project

THIS ANNOUNCEMENT HAS BEEN AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

About Kingsland Minerals Ltd

Kingsland Minerals Ltd is an exploration company with assets in the Northern Territory and Western Australia. Kingsland's focus is exploring and developing the Leliyn Graphite Project in the Northern Territory. In addition to Leliyn, Kingsland owns the Cleo Uranium Deposit in the Northern Territory. Kingsland drilled this out in 2022 and estimated an Inferred Mineral Resource containing 5.2 million pounds of U_3O_8 . The Lake Johnston Project in Western Australia has historic nickel drill intersections and is also prospective for lithium mineralisation. Kingsland has a portfolio of very prospective future energy mineral commodities.

FOLLOW US ON TWITTER: <u>https://twitter.com/KingslandLtd</u>

CAPITAL STRUCTURE

Shares on issue: 58,499,800 Options on issue: 18,669,920

INVESTOR RELATIONS

Read Corporate Paul Armstrong Email: <u>info@readcorporate.com.au</u> Tel: +61 8 9388 1474

BOARD OF DIRECTORS

Richard Maddocks: Managing Director **Bruno Seneque:** Director/Company Secretary **Nicholas Revell:** Executive Technical Director

SHAREHOLDER CONTACT

Bruno Seneque Email: <u>info@kingslandminerals.com.au</u> Tel: +61 8 9381 3820

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Richard Maddocks, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Richard Maddocks has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Richard Maddocks consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Richard Maddocks is a full time employee of Kingsland Minerals Ltd and holds securities in the company.

JORC Tables

Section 1: Sampling Techniques and Data - Lake Johnston Lithium Project

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples were collected on a 500m (NS) X 200m (EW) grid. Sample weights for soil samples ranged between 200-300g, The sieved -80 mesh fraction was collected between 5-30cm below surface and secured in individually numbered paper bags and secured poly weave sacks
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling techniques were used.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC drilling sample recoveries are considered to be high
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drilling was qualitatively geologically logged recording lithology, mineralisation colour, weathering and grain size.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	• If core, whether cut or sawn and whether quarter, half or all core taken.	• Approximate 4kg samples were taken for the 3m to 5m composite.
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to Labwest of Perth with samples analysed using the Ultrafine method The <2um fraction is separated from the submitted soil or regolith sample. This is achieved by settling, using water and a dispersant. The clay fraction is digested in aqua-regia under high pressure and temperature using microwave apparatus. Elemental concentration is determined using a combination of ICP-MS & ICP-OES. Multi-elements include: Au, Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr. The assay technique is considered appropriate for the style of mineralisation No standards, blanks or field duplicated were submitted
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Assays and data entry have been verified by company geologists.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were surveyed with a hand held GPS with +/- 5m accuracy.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This sampling was done to establish the presence of any lithium mineralisation. This data is not considered appropriate for the estimation of Mineral Resources
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The orientation of any pegmatitic intrusives is not known.
Sample security	• The measures taken to ensure sample security.	Samples were delivered to the lab by contractors on Kingsland behalf.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or reviews of sampling techniques have been undertaken.

Section 2: Reporting of Lake Johnston Lithium Project Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The Lake Johnston Lithium Project is located on tenements E63/2068, E63/2438, E63/2439, E63/2440 and E15/2065. These tenements are 100% owned by Kingsland Gold Pty Ltd a fully owned subsidiary of Kingsland Minerals Ltd. E63/2438, E63/2439, E63/2440 and E15/2065 are applications and are yet to be granted. E63/2068 has been granted.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has targeted nickel and gold. Some scattered soil sampling has been completed along with some RC drilling. Nickel exploration was conducted by Western Areas
Geology	 Deposit type, geological setting and style of mineralisation. 	 The project area lies in the southern portion of the Southern Cross Province between the Lake Johnston greenstone belt and the main Forrestania greenstone belt of the Archaean Yilgarn Craton. The northwest trending belt extends over a strike length of approximately 35 km and a maximum width of 8 km. Kingsland's Lake Johnston Project is underlain by numerous granitic rocks of Archaean age and basement granitoids and gneiss, frequently incorporating rafts of highly deformed and metamorphosed greenstone

Criteria	JORC Code explanation	Commentary
		 lithotypes. These small isolated greenstones rafts are the target of nickel exploration Two prominent Proterozoic dykes cross the project area, the largest being the Jimberlana Dyke which lies roughly along the Hyden Norseman road and the other passing through E63/2440.
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Sampling information is included in this announcement
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	 No data aggregation has been conducted. Assays are reported as they were sampled.
Relationship between mineralisation widths and intercept lengths	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	This relationship is not known due to the early stage of the project
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Relevant diagrams have been included within the main body of text.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high 	The competent person deems the reporting of these results to be balanced.

Criteria	JORC Code explanation	Commentary
	grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The geology image contained in Figure 2 was sourced from the Geological Survey of Western Australia on the website <u>https://geoview.dmp.wa.gov.au</u>. There is no other substantive data to report. Exploration at Lake Johnston is at an early stage with only limited historical exploration data relevant to lithium mineralisation
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geochemical surveys over the project area and public release geophysical data will be used to generate targets for more focussed exploration. Additional soil sampling will be conducted during 2024 to delineate additional lithium anomalism