# **ASX ANNOUNCEMENT**



ASX: KNG kingslandminerals.com.au

# Kingsland Minerals completes IPO and lists on ASX with high grade Uranium projects in the Northern Territory of Australia

- Kingsland Minerals (ASX:KNG) successfully lists on ASX and raises \$4.7m
- Assumes 100% ownership of exciting Uranium, Copper and Gold Projects in the Pine Creek region of the Northern Territory (NT)
- Appointment of highly experienced uranium exploration and resource geologist, David Princep (ex Paladin Energy Ltd) in advisory role
- Drilling to commence shortly targeting Uranium in the NT
- Significant historical Uranium drill results at the Allamber Project include:
  - **42m at 611 ppm U<sub>3</sub>O<sub>8</sub> from 97m** (TAL062RC) incl:
    - 8m at 1,579 ppm U<sub>3</sub>O<sub>8</sub> from 99m
    - 3m at 1,347 ppm U<sub>3</sub>O<sub>8</sub> from 124m
  - 23m at 1,318 ppm U<sub>3</sub>O<sub>8</sub> from 86m (TAL079RC) incl:
    - 5m at 3,169 ppm  $U_3O_8$  from 102m
  - **49m at 787 ppm U\_3O\_8 from 58m (TAL0107RC) incl:** 
    - 17m at 1,286 ppm U<sub>3</sub>O<sub>8</sub> from 78m
  - **18m at 932 ppm U<sub>3</sub>O<sub>8</sub> from 70m (TAL108RC) incl:** 
    - 4m at 2,600 ppm U<sub>3</sub>O<sub>8</sub> from 82m
    - 13m at 251 ppm U<sub>3</sub>O<sub>8</sub> from 123m
- Significant historical Uranium drill results at the Bella Rose Project include:
  - **6m at 1,199 ppm U<sub>3</sub>O<sub>8</sub> from 79m (TPCRC106) incl**:
    - 1m at 5,230 ppm U<sub>3</sub>O<sub>8</sub> from 80m
    - 2m at 636 ppm U<sub>3</sub>O<sub>8</sub> from 113m
    - 1m at 210 ppm U<sub>3</sub>O<sub>8</sub> from 161m

Kingsland Minerals Ltd (ASX:KNG) (Kingsland or Company) is pleased to announce that it has successfully raised \$4.7m and has been accepted for admission to the official list of the Australian Stock Exchange (ASX). Shares in Kingsland will begin trading on 14 June 2022 at 11:00 AM (WST). The Initial Public Offering (IPO) has raised \$4.7m through the issue of 23.5m shares at an issue price of \$0.20. The total undiluted shares on issue at the date of listing in 37.4m with KNG having a Market Capitalisation of \$7.5m and an Enterprise Value (EV) of \$2.7m.

Kingsland has accumulated an exciting package of tenements in the Northern Territory and Western Australia that are highly prospective for Uranium, Copper, Gold and Nickel. Exploration will commence shortly in the Northern Territory and Western Australia. Approvals to drill have been obtained for the Lake Johnston Project in Western Australia and are in the application process for projects in the Northern Territory.

# **ALLAMBER URANIUM PROJECT**

The Allamber Uranium Project contains historical drilling targeting Uranium dating from the early 1980's when uranium mineralisation was first discovered. Exploration has been focussed on an embayment in the Cullen Granites (Figures 1 and 2). Reverse circulation (RC) and Diamond core drilling by previous explorers has delineated broad, high grade drill intersections of  $U_3O_8$  at the Twin, Dam and Cliff South prospects.

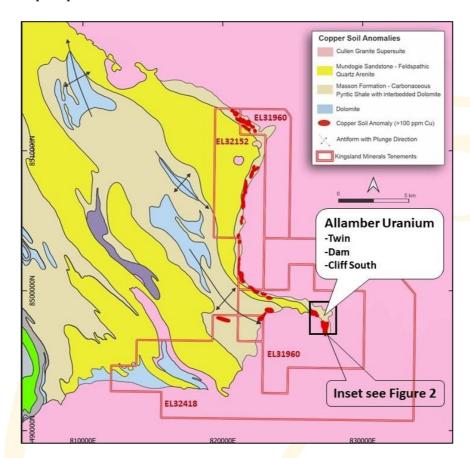



Figure 1: Kingsland Minerals Allamber Project

Kingsland Minerals has designed drilling programs to firstly confirm the historical drill results and secondly to extend the known mineralisation. The focus will be to collect data and information and to delineate additional uranium mineralisation to ultimately enable the estimation of a Mineral Resource Estimate.

Uranium mineralisation has been found to be associated with thin felsic/granitic dykes intruded into the hosting carbonaceous sediments of the Masson Formation. Figure 2 shows a more detailed map of the geology in the embayment within the Cullen granites. Several radiometric anomalies are shown with a majority of drilling to date focussed on Twin, Dam and Cliff South. The area is under explored and Kingsland will prioritise the exploration of this prospective area.

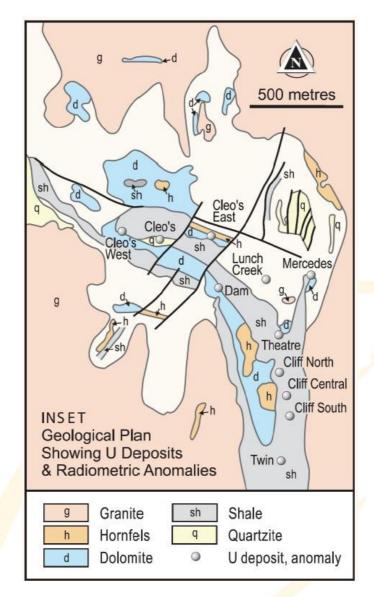



Figure 2: Allamber Uranium Prospects

# Twin Uranium Prospect

The Twin deposit is located in a strongly folded syncline of Lower Protoerzoic metasediments enclosed and intruded by dykes of Cullen granite. The lithologies forming the syncline include a basal psammite, quartzites and sericite-chlorite schists. The unit is overlain by a thick sequence of carbonaceous shales which, when affected by faulting, become graphitic and chlorite schists. The carbonaceous shale sequence contains interbedded dolomite lenses. The uppermost unit exposed at the Twin deposit is a coarse-grained quartzite which occupies the core of the syncline.

The Twin syncline has been strongly faulted, with faults trending parallel to the axial plane of the syncline. These faults have become the loci of subsequent intrusion by late phases of the Cullen granite. The uranium mineralisation is also concentrated within these faults. A secondary, later, fault system, oblique to the axial plane of the syncline, has displaced both the stratigraphy and the earlier fault system. The later faults do not appear to be mineralised. Mineralisation at Twin is both primary and secondary, with remobilisation and redeposition of the uranium minerals having taken place at or near the water table.

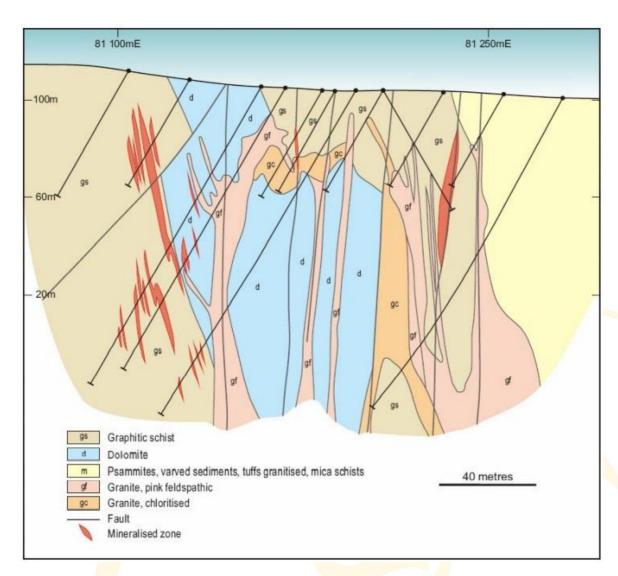



Figure 3: Schematic cross section through Twin

**Table 1: Significant Drill Intersections Twin Prospect** 

|         |            |           | 147: Jal.    |                                   |
|---------|------------|-----------|--------------|-----------------------------------|
| Hole    | From (m)   | To (m)    | Width<br>(m) | U <sub>3</sub> O <sub>8</sub> ppm |
| TRC707  | 52         | 55        | 3            | 252                               |
| TRC707  | 32         | 60        | 28           | 709                               |
| inc     | 32         | 42        | 10           | 1,489                             |
| TRC713  | 32         | 36        | 4            | 285                               |
| and     | 47         | 50        | 5            | 487                               |
| TRC716  | 0          | 10        | 10           | 237                               |
| and     | 28         | 32        | 4            | 432                               |
| and     | 52         | 56        | 4            | 342                               |
| TRC718  | 0          | 19        | 19           | 269                               |
| TRC710  | 22         | 26        | 4            | 231                               |
| TRC721  | 40         | 60        | 20           | 627                               |
| inc     | 51         | 57        | 6            | 1,336                             |
| TRC730  | 42         | 47        | 5            | 1,220                             |
| inc     | 45         | 47        | 2            | 2,595                             |
| TRC734  | 47         | 54        | 7            | 793                               |
| inc     | 47         | 50        | 3            |                                   |
| TRC735  | 44         | 47        | 3            | 1,431<br>858                      |
| and     | 54         | 57        | 3            | 370                               |
| TRC736  | 16         | 31        | 15           | 242                               |
| TRC737  | 23         | 31        | 8            | 680                               |
| inc     | 23         | 25        | 2            | 1,012                             |
| and     | 45         | 48        | 3            | 851                               |
| TRC738  | 30         | 53        | 23           | 749                               |
| inc     | 37         | 43        | 6            | 1,618                             |
| TRC739  | 33         | 38        | 5            | 773                               |
| and     | 43         | 48        | 5            | 488                               |
| TRC740  | 17         | 29        | 12           | 201                               |
| and     | 39         | 48        | 9            | 243                               |
| TRC741  | 39         | 47        | 8            | 412                               |
| and     | 51         | 58        | 7            | 301                               |
| TRC744  | 30         | 33        | 3            | 282                               |
| and     | <b>50</b>  | <b>51</b> | 1            | 1,100                             |
| TRC748  | 0          | 14        | 14           | 321                               |
| TRC754  | 21         | 28        | 7            | 418                               |
| 11(0/5) | <b>4</b> 1 | 20        |              | 410                               |

# Dam Uranium Prospect

Mineralisation at the Dam deposit occurs higher in the stratigraphic sequence than at Twin. A large proportion of the lower units of the syncline have been adsorbed into the Cullen granite, particularly to the west. At the Dam deposit, mineralisation is more widely spread through the stratigraphy. There is also less evidence for secondary concentration of mineralisation at or near the water table. The syncline at Dam is much broader and the dip of the sediments not as steep as Twin. The later, oblique faulting is better defined and both groups of faults host uranium mineralisation.

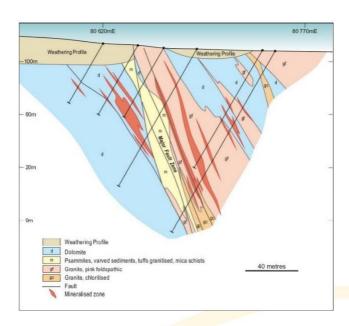



Figure 4: Schematic Cross section Dam Prospect

Table 2: Significant Drill Intersections Dam Prospect

|               |          |                  | Width |                                   |
|---------------|----------|------------------|-------|-----------------------------------|
| Hole          | From (m) | To (m)           | (m)   | U <sub>3</sub> O <sub>8</sub> ppm |
| DRC701        | 28       | 32               | 4     | 825                               |
| inc           | 29       | 31               | 2     | 1,280                             |
| <b>DRC701</b> | 35       | 36               | 1     | 590                               |
| DRC704        | 23       | 37               | 14    | 1,335                             |
| inc           | 23       | 2 <mark>9</mark> | 6     | 2,869                             |
| DRC705        | 23       | 29               | 6     | 222                               |
| DRC708        | 15       | 34               | 19    | 211                               |
| and           | 49       | 52               | 3     | 640                               |
| DRC712        | 37       | 41               | 4     | 282                               |
| inc           | 39       | 40               | 1     | 615                               |
| DRC713        | 57       | 60               | 3     | 388                               |
| inc           | 59       | 60               | 1     | 710                               |
| DRC714        | 25       | 41               | 16    | 802                               |
| inc           | 25       | 32               | 7     | 1,553                             |
| and           | 49       | 53               | 4     | 765                               |
| DRC715        | 49       | 52               | 3     | 453                               |
| and           | 57       | 59               | 2     | 482                               |
| DRC717        | 29       | 42               | 13    | 357                               |
| inc           | 30       | 34               | 4     | 810                               |
| DRC718        | 36       | 59               | 23    | 353                               |
| DRC722        | 40       | 56               | 16    | 343                               |
| DRC723        | 38       | 43               | 5     | 351                               |
| DRC726        | 26       | 35               | 9     | 375                               |
| inc           | 30       | 33               | 3     | 793                               |
| DRC727        | 26       | 28               | 2     | 880                               |
| DRC734        | 40       | 42               | 2     | 635                               |
| and           | 46       | 55               | 9     | 279                               |
| inc           | 46       | 47               | 1     | 1,309                             |

## **Cliff South Uranium Prospect**

The main mineralised zone at Cliff South is located on the eastern flank of a southerly plunging antiform of metasediments. To the south-west, the mineralisation appears to lose intensity as it approaches the hinge of the antiform. Multiple alkaline granitic dykes were intersected in all the RC drilling at Cliff South but the relationship with the uranium mineralisation and the dykes is not yet known. Additional diamond drilling will be required to fully understand the mineralisation model.

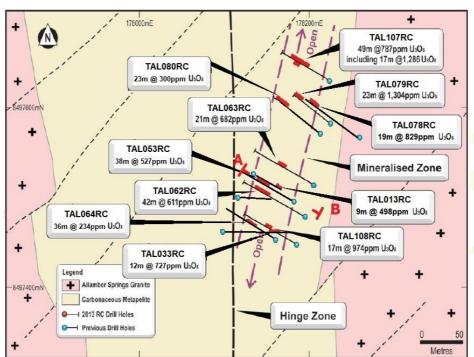



Figure 5: Drill plan of Cliff South Prospect

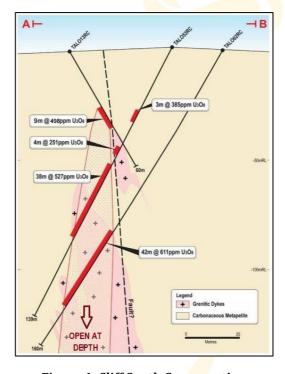



Figure 6: Cliff South Cross-section

**Table 3: Significant Drill Intersections Cliff South** 

| Hole                     | From (m) | To (m) | Width (m) | U <sub>3</sub> O <sub>8</sub> ppm |
|--------------------------|----------|--------|-----------|-----------------------------------|
| TAL013RC                 | 30       | 39     | 9         | 498                               |
| TAL032RC                 | 43       | 51     | 8         | 474                               |
| TAL033RC                 | 77       | 89     | 12        | 727                               |
| inc                      | 88       | 89     | 1         | 3,927                             |
| and                      | 108      | 113    | 5         | 614                               |
| TAL053RC                 | 61       | 99     | 38        | 527                               |
| inc                      | 78       | 87     | 9         | 1,457                             |
| TAL062RC                 | 97       | 139    | 42        | 611                               |
| inc                      | 99       | 107    | 8         | 1,579                             |
| and                      | 124      | 127    | 3         | 1,347                             |
| TAL063RC                 | 77       | 98     | 21        | 682                               |
| inc                      | 88       | 97     | 9         | 1,055                             |
| TAL064RC                 | 50       | 86     | 36        | <mark>234</mark>                  |
| inc                      | 76       | 79     | 3         | 912                               |
| TAL078RC                 | 98       | 117    | 19        | 829                               |
| inc                      | 98       | 102    | 4         | 2,857                             |
| TAL079RC                 | 86       | 109    | 23        | 1,318                             |
| inc                      | 102      | 107    | 5         | 3,169                             |
| TAL <mark>080</mark> RC  | 96       | 119    | 23        | 300                               |
| inc                      | 96       | 102    | 6         | 616                               |
| T <mark>ALO</mark> 107RC | 58       | 107    | 49        | 787                               |
| inc                      | 78       | 95     | 17        | 1,286                             |
| TAL0108RC                | 70       | 88     | 18        | 932                               |
| inc                      | 82       | 86     | 4         | 2,600                             |
| and                      | 123      | 136    | 13        | 251                               |

# Appointment of Consulting Uranium Geologist

The company has secured the services of a highly experienced uranium exploration and resource geologist, David Princep, in an advisory role. Mr Princep has extensive experience in exploration and estimation of mineral resources for uranium across the globe, having worked for Paladin Energy Limited ("Paladin") and a number of other uranium companies, over the last 20 years. Whilst working at Paladin, Mr Princep prepared or oversaw the Mineral Resource estimates for all of their projects and undertook evaluation of significant number of external projects and prospects for potential merger or acquisition. For the last 4 years Mr Princep has been working as an independent consultant to a number of uranium companies advising on exploration, mineral resources, mining and grade control. David's experience will be invaluable for Kingsland as we progress the Allamber Uranium Project from exploration through to Mineral Resource Estimation.

#### **Uranium Market**

The price for Uranium ( $U_3O_8$ ) has seen a significant increase over the past 12 months (Figure 7). Recent international geo-political issues have resulted in a supply/demand imbalance. This, in addition to a sustained depressed price resulting in many previous mine closures has pushed the uranium price to levels not seen for more than 10 years. The future outlook is also enhanced by the realisation that nuclear energy will play an important role in reducing carbon emissions in generating base load electricity.

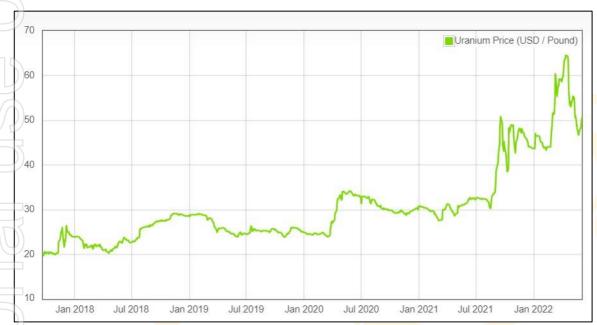



Figure 7: Uranium Price 2018-2022 (www.dailymetalprice.com)

#### Other Projects

Kingsland also owns a portfolio of other prospective projects in Northern Territory and Western Australia. The Shoobridge Project has historic uranium and gold exploration results and also has potential for pegmatite hosted mineralisation. The Bella Rose uranium prospect has returned some significant RC drilling assay results and will be a future exploration target. The Woolgni Project has historic gold workings and diamond and RC drilling from the 1980's with significant gold mineralisation intersected. The Mt Davis Project has historic workings targeting base metal mineralisation and also has more recent drilling with significant gold mineralisation.

In Western Australia the Lake Johnston Project has historic drilling with nickel mineralisation.

Each of these projects will be progressed with exp<mark>lor</mark>ation programs and budgets included in the Independent Geology Report within the Kingsland Minerals Ltd IPO Prospectus.

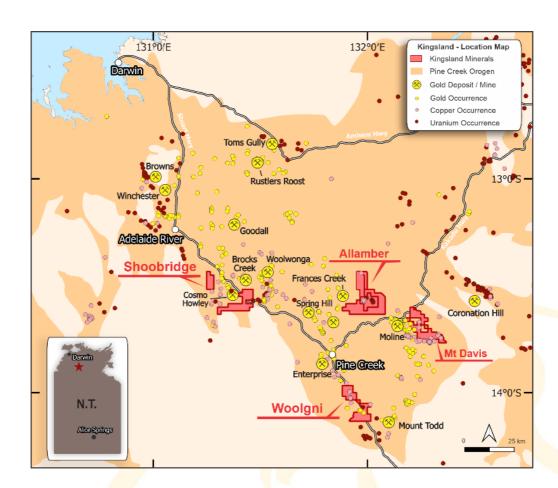



Figure 8: Kingsland Minerals Northern Territory Exploration Projects

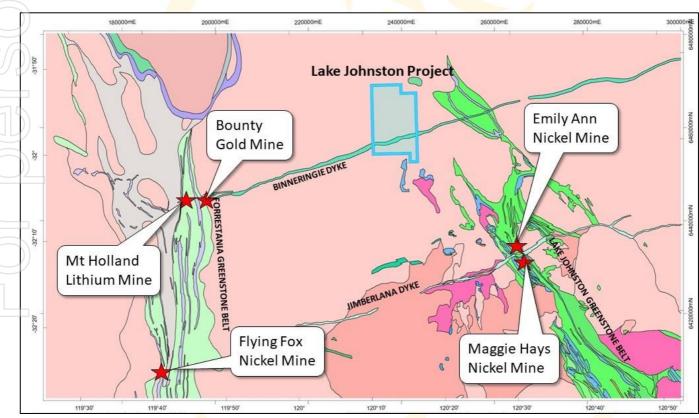



Figure 9: Location of Lake Johnston Project

THIS ANNOUNCEMENT HAS BEEN AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

## **About Kingsland Minerals Ltd**

Kingsland Minerals Ltd is an exploration company with assets in the Northern Territory of Australia and Western Australia. There are four project areas in the NT: Allamber, Woolgni, Shoobridge and Mt Davis. In additional Kingsland Minerals owns a nickel project at Lake Johnston in Western Australia. Kingsland's focus is on exploration and development of prospective uranium prospects at Allamber and Shoobridge in the Northern Territory. Following a successful listing on the ASX in June 2022 company details are as follows:

#### **FOLLOW US ON TWITTER:**

https://twitter.com/KingslandLtd

# **CAPITAL STRUCTURE**

Share Price (14 June 2022): \$0.20 Shares on issue: 37,389,840 Market Cap (\$0.20): \$7.5m

#### **COMPANY SECRETARY**

Bruno Seneque

#### SHAREHOLDER CONTACT

Bruno Seneque

Email: info@kingslandminerals.com.au

Tel: +61 8 9381 3820

#### **BOARD OF DIRECTORS**

Mal Randall: Non-Executive Chairman Richard Maddocks: Managing Director Bruno Seneque: Non-Executive Director Nicholas Revell: Non-Executive Director

#### Competent Persons Statement

The information in this announcement referring to exploration results is extracted from the report entitled Kingsland Minerals Prospectus' created on June 9 2022 and available to view on <a href="www.kingslandminerals.com.au">www.kingslandminerals.com.au</a>. or on the ASX website <a href="www.asx.com.au">www.asx.com.au</a> under ticker code KNG. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.'