

**ASX ANNOUNCEMENT** 

ASX: **KNG** kingslandminerals.com.au

22 August 2023

# <u>Leliyn Graphite Project, Northern Territory</u>

# First diamond core assays confirm high grades over big widths

Latest results show Leliyn is emerging as a globally-significant graphite discovery

**Highlights** 

- High-grade diamond drill core assays confirm earlier RC drilling assays
- The Total Graphitic Carbon (TGC) assays from the two diamond holes include:
  - 132m @ 8.7 % from 0m (LEDD\_01)
    - incl 94m @ 10.8% from 31m
  - 126m @ 7.6 % from 52m (LEDD\_02)
    - incl 53m @ 11.1% from 117m
- and RC hole:
  - 41m @ 10.5% from 0m (LERC\_28)
- The diamond holes were drilled 3.5km apart; Diamond and RC drilling ongoing to infill and extend the known mineralisation
- Core samples will be sent for metallurgical tests to confirm the graphite is suitable for use in lithium batteries

**Kingsland Minerals Ltd (ASX:KNG)** is pleased to announce Total Graphitic Carbon (TGC) assays for the first two diamond core holes drilled at its Leliyn Graphite Project.

Hole LEDD\_01 was drilled on the eastern side of the project area and LEDD\_02 on the western side (refer Figure 1). There is about 3.5 km between the two diamond core holes. RC and diamond drilling are continuing to infill and extend the graphite mineralisation.

Kingsland Minerals Managing Director, Richard Maddocks said: "These diamond drill core assays are consistent with the recent RC drilling and confirm the wide, high-grade graphite mineralisation. They are important results because they continue to show Leliyn is emerging as a globally-significant graphite discovery with very high grades. These results will form part of the maiden Resource Estimate and the core will be used for more detailed metallurgical test-work".

| Hole    | From | То  | Length | % TGC |
|---------|------|-----|--------|-------|
| LEDD_01 | 0    | 132 | 132    | 8.73  |
| incl    | 31   | 125 | 94     | 10.82 |
| LEDD_02 | 52   | 178 | 126    | 7.62  |
| incl    | 117  | 170 | 53     | 11.09 |
| LERC_19 | 8    | 107 | 99     | 6.07  |
| LERC_28 | 0    | 41  | 41     | 10.50 |
|         | 52   | 66  | 14     | 10.81 |
|         | 79   | 87  | 8      | 7.26  |
|         | 99   | 109 | 10     | 3.46  |

|         |           |            |           | _      |         |      |
|---------|-----------|------------|-----------|--------|---------|------|
| Tabla 1 | I atost a | agan datai | la Lalium | Crophi | to Drad | oot  |
| гаре т  | ildlest d | ssav uetai | із генілі | UIDUU  | lerio   | ιειι |
|         |           |            | ,         |        |         |      |

Intersections are reported at a 2% TGC cut-off grade with a maximum of 4 consecutive meters of internal dilution.

Table 1 shows the graphite drill intersections and assays for the first two diamond core drill holes and RC holes LERC\_28 and the remainder of LERC\_19. LEDD\_02 (Cross-section D, Figure 6) was drilled next to RC hole LERC\_14 and returned a similar grade and width intersection (139m @ 6.97% in LERC\_14 compared to 126m @ 7.62% in LEDD\_02). The grades and widths in LEDD\_01 (Cross-section G, Figure 9) are also backed up with similar intersections in previously drilled RC holes. The remainder of LERC\_19 (Cross-section F, Figure 8) was received as was LERC\_28 (Cross-section D, Figure 6).

Figure 1 shows a section of LEDD\_02 with one meter TGC assays in the graphitic schist. High grades display consistency along significant lengths down the drill hole.

Small sections of core have been submitted for thin section petrographic analysis and these are expected to be released as they are received and assessed. The next step is to collect representative samples from the diamond drill core and submit these for flotation test-work. These tests will establish the viability of the graphitic schist to produce a graphite concentrate of a quality that is amenable to further downstream purifying and processing with the targeted final product being purified spherical graphite for use as battery anode material in lithium-ion batteries.

Figures 3 to 9 show cross-sections updated with the latest drill assay results.





Figure 2: Plan showing location of drillhole results and cross sections



Figure 3: Cross section A-A' looking north-west at approximate easting 822200 (MGAZ52)



Figure 4: Cross section B-B' looking north-west at easting 822400 (MGAZ52)



Figure 5: Cross section C-C' looking west at easting 822550 (MGAZ52)



Figure 6: Cross section D-D' looking west at easting 822600 (MGAZ52)



Figure 7: Cross section E-E' looking west at easting 822920 (MGAZ52)



Figure 8: Cross section F-F' looking west at easting 824675 (MGAZ52)



Figure 9: Cross section G-G' looking west at easting 825390 (MGAZ52)

| Hole      | From           | То    | Length  | % TGC |
|-----------|----------------|-------|---------|-------|
| LEDDRC_01 | 25             | 54    | 29      | 9.30  |
| incl      | 40             | 54    | 14      | 12.99 |
| LERC_02   | 41             | 60    | 19      | 8.15  |
| incl      | 42             | 52    | 10      | 11.69 |
| LERC_06   | 0              | 25    | 25      | 10.10 |
| incl      | 11             | 23    | 12      | 11.48 |
| LERC_08   | 0              | 46    | 46      | 8.33  |
| incl      | 0              | 18    | 18      | 11.79 |
|           | 55             | 84    | 29      | 10.83 |
| LERC_09   | 67             | 84    | 17      | 2.44  |
|           | 101            | 113   | 12      | 2.33  |
| LERC_10   | 0              | 124   | 124     | 4.32  |
| incl      | 5              | 37    | 32      | 7.40  |
| and       | 59             | 124   | 65      | 3.15  |
| LERC_11   | 0              | 130   | 130     | 6.28  |
| incl      | 1              | 30    | 29      | 8.92  |
| and       | 93             | 114   | 21      | 11.27 |
| LERC_12   |                | N     | SI      |       |
| LERC_13   | 13             | 150   | 137     | 7.29  |
| incl      | 69             | 116   | 47      | 10.85 |
| and       | 138            | 150   | 12      | 11.23 |
| LERC_14   | 48             | 187   | 139     | 6.97  |
| incl      | 107            | 170   | 63      | 10.04 |
|           | 200            | 204   | 4       | 8.93  |
| LERC 15   | 9              | 78    | 69      | 7.97  |
| LERC 16   | 2              | 5     | 3       | 2.71  |
| LERC 17   | 16             | 174   | 158     | 10.13 |
| LERC 18   | 45             | 173   | 128     | 8.58  |
| incl      | 87             | 173   | 86      | 10.90 |
| LERC 19   | 8              | 91    | 83      | 5.92  |
| LERC 20   | 11             | 22    | 11      | 5.27  |
| LERC 21   | 0              | 78    | 78      | 5.19  |
| incl      | 57             | 71    | 14      | 8.71  |
| LERC 22   | 42             | 114   | 72      | 4.71  |
| LERC 23   | 0              | 18    | 18      | 6.08  |
| IFRC 24   |                | <br>N | SI      | 0.00  |
| LERC 25   | 4              | 21    | 17      | 3,79  |
| LERC 26   | 2              | 7     | 5       | 4 14  |
| 22110_20  | 33             | 34    | 1       | 2.18  |
| LFRC 28   | 0              | 41    | 41      | 10.5  |
| LENC_20   | 52             | 66    | 14      | 10.5  |
|           | 79             | 87    | 8       | 7.26  |
|           | 99             | 109   | 10      | 3.46  |
| IFRC 29   |                | acave | nending | 5110  |
| LFRC 30   |                | 2000  | nending |       |
|           | n              | 132   | 137     | 8,73  |
| incl      | 31             | 125   | 94      | 10.82 |
|           | 52             | 178   | 126     | 7 62  |
| incl      | 117            | 170   | 52      | 11 09 |
|           |                |       | nending | 11.05 |
|           | assays penuing |       |         |       |
|           | assays pending |       |         |       |
|           |                |       |         |       |
|           | assays pending |       |         |       |

# Table 2: Leliyn Drilling Assay Results

| Hole                  | Туре | East MGA52           | North MGA52            | RL                | Dip               | Azi | Depth  | Assays                         |
|-----------------------|------|----------------------|------------------------|-------------------|-------------------|-----|--------|--------------------------------|
| LEDD_01               | DDH  | 825395               | 8499428                | 124               | -70               | 195 | 149.6  | assays returned                |
| LEDD_02               | DDH  | 822614               | 8499882                | 139               | -60               | 190 | 182.39 | assays returned                |
| LEDD_03               | DDH  | 822393               | 8499941                | 139               | -60               | 220 | 124    | assays pending                 |
| LEDD_04               | DDH  | 822280               | 8500099                | 147               | -60               | 335 | 362.56 | assays pending                 |
| LEDD_05               | DDH  | 822229               | 8500058                | 161               | -60               | 335 | 262    | assays pending                 |
| LEDD_06               | DDH  | 824678               | 8499593                | 128               | -60               | 180 | 155    | assays pending                 |
| LEDDRC_01             | RC   | 825215               | 8499428                | 123               | -60               | 180 | 54     | assays returned                |
| LEDDRC_02             | RC   | 825339               | 8499459                | 118               | -60               | 180 | 78     | not assayed                    |
| LERC_01               | RC   | 824851               | 8499519                | 119               | -60               | 180 | 90     | not assayed                    |
| LERC_02               | RC   | 825202               | 8499426                | 124               | -60               | 180 | 72     | assays returned                |
| LERC_03               | RC   | 825014               | 8499484                | 124               | -60               | 180 | 54     | not assayed                    |
| LERC_04               | RC   | 825208               | 8499375                | 129               | -60               | 180 | 84     | not assayed                    |
| LERC_05               | RC   |                      |                        |                   |                   |     |        | not yet drilled                |
| LERC_06               | RC   | 825395               | 8499398                | 126               | -60               | 180 | 96     | assays returned                |
| LERC_07               | RC   | 824587               | <mark>849952</mark> 4  | 138               | -60               | 180 | 36     | not as <mark>say</mark> ed     |
| LERC_08               | RC   | 825395               | 8499426                | 124               | -60               | 180 | 102    | assays re <mark>tu</mark> rned |
| LERC_09               | RC   | 8224 <mark>55</mark> | 8499945                | 136               | - <mark>60</mark> | 225 | 120    | assays r <mark>etu</mark> rned |
| LERC_10               | RC   | 82 <mark>2396</mark> | 8499893                | 147               | -60               | 225 | 150    | ass <mark>ays ret</mark> urned |
| LERC_11               | RC   | <mark>82255</mark> 7 | 84998 <mark>50</mark>  | 140               | -60               | 180 | 150    | assays r <mark>eturne</mark> d |
| LERC_12               | RC   | <mark>82</mark> 2565 | 8499 <mark>923</mark>  | 135               | -6 <mark>0</mark> | 180 | 138    | assays returned                |
| LERC_13               | RC   | 822562               | 8499 <mark>87</mark> 6 | 138               | -60               | 185 | 150    | assays returned                |
| LERC_14               | RC   | 822614               | 84998 <mark>80</mark>  | 139               | -60               | 180 | 204    | assays returned                |
| LERC_15               | RC   | 822563               | 84998 <mark>2</mark> 6 | 141               | -60               | 180 | 90     | assays returned                |
| LERC_16               | RC   | 822562               | 8499795                | 145               | -60               | 185 | 54     | assays returned                |
| LERC_17               | RC   | 822391               | 8499943                | 139               | -60               | 235 | 174    | assays returned                |
| LERC_18               | RC   | 822656               | 8499866                | 139               | -60               | 184 | 174    | assays returned                |
| LERC_19               | RC   | 824678               | 8499590                | 128               | -60               | 187 | 114    | assays returned                |
| LERC_20               | RC   | 825009               | 8499488                | 124               | -60               | 180 | 42     | assays returned                |
| LERC_21               | RC   | 824680               | 8499536                | 129               | <mark>-6</mark> 0 | 180 | 102    | assays returned                |
| LERC_22               | RC   | 824678               | 8499637                | 124               | -60               | 185 | 114    | assays returned                |
| LERC_2 <mark>3</mark> | RC   | 824282               | 8499570                | 1 <mark>31</mark> | -60               | 185 | 60     | assays returned                |
| LERC_2 <mark>4</mark> | RC   | 824287               | 8499612                | <mark>12</mark> 9 | -60               | 185 | 60     | assays returned                |
| LERC_2 <mark>5</mark> | RC   | 825014               | 8499477                | <mark>1</mark> 25 | -60               | 180 | 60     | assays returned                |
| LERC_2 <mark>6</mark> | RC   | 824376               | 8499620                | 131               | -60               | 180 | 78     | assays returned                |
| LERC_27               | RC   | 825136               | 8499457                | 126               | -60               | 180 | 60     | not assayed                    |
| LERC_28               | RC   | 822613               | 8499819                | 146               | -60               | 180 | 174    | assays returned                |
| LERC_29               | RC   | 822173               | 8500242                | 149               | -60               | 215 | 174    | assays pending                 |
| LERC_30               | RC   | 822100               | 8500210                | 161               | -90               | 0   | 132    | assays pending                 |

# Table 3: Details of Leliyn Drilling



Figure 10: Kingsland Minerals Northern Territory Exploration Projects

THIS ANNOUNCEMENT HAS BEEN AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

### About Kingsland Minerals Ltd

Kingsland Minerals Ltd is an exploration company with assets in the Northern Territory and Western Australia. Kingsland's focus is exploring the Leliyn Graphite Project in the Northern Territory. The Company is confident that Leliyn has significant potential, as shown by the substantial Exploration Target of 200-250 million tonnes grading 8-11 per cent Total Graphitic Carbon (TGC) for contained graphite of 16-27Mt<sup>1</sup>. The Exploration Target is based on a graphitic schist measuring 5km long, 200m deep and 100m wide. The 5km strike length of the schist sits within a longer 20km-long graphitic schist. The initial exploration program will focus on the 5km stretch which hosts the Exploration Target. This will underpin a maiden JORC Resource. Kingsland believes there is also significant exploration potential within the remaining 15km of graphitic schist.

<sup>&</sup>lt;sup>1</sup> The potential quantity and grade of an exploration target is conceptual in nature, there has been insufficient exploration to determine a mineral resource and there is no certainty that further exploration work will result in the determination of mineral resources or that the production target itself will be realised

#### FOLLOW US ON TWITTER: https://twitter.com/KingslandLtd

**CAPITAL STRUCTURE** Shares on issue: 58,299,300 Options on issue: 18,669,920

#### **INVESTOR RELATIONS**

Read Corporate Paul Armstrong Email: <u>info@readcorporate.com.au</u> Tel: +61 8 9388 1474

#### **BOARD OF DIRECTORS**

Mal Randall: Non-Executive Chairman Richard Maddocks: Managing Director Bruno Seneque: Director/Company Secretary Nicholas Revell: Non-Executive Director

#### **SHAREHOLDER CONTACT**

Bruno Seneque Email: <u>info@kingslandminerals.com.au</u> Tel: +61 8 9381 3820

#### **Competent Persons Statement**

The information in this report that relates to Exploration Results is based on information compiled by Richard Maddocks, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Richard Maddocks has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Richard Maddocks consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Richard Maddocks is a full time employee of Kingsland Minerals Ltd and holds securities in the company.

The information in this announcement referring to the Leliyn Exploration Target is extracted from the report entitled 'Graphite Exploration Target' created on March 21 2023 and available to view on <u>www.kingslandminerals.com.au</u>, or on the ASX website <u>www.asx.com.au</u> under ticker code KNG. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.'

## **JORC** Tables

Section 1: Sampling Techniques and Data Leliyn Graphite Project

| Criteria              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry'</li> </ul> | <ul> <li>RC drilling samples were collected as 1m intervals via a riffle splitter off the drill rig.</li> <li>Diamond core is cut in half</li> <li>Samples for thin section analysis were collected from half core about every 7-8m down the core hole. A small section of core about 10cm long was collected</li> </ul> |
|                       | standard' work has been done this<br>would be relatively simple (eg 'reverse<br>circulation drilling was used to obtain 1<br>m samples from which 3 kg was<br>pulverised to produce a 30 g charge for<br>fire assay'). In other cases more<br>explanation may be required, such as<br>where there is coarse gold that has<br>inherent sampling problems. Unusual<br>commodities or mineralisation types (eg<br>submarine nodules) may warrant<br>disclosure of detailed information.                                                                                                                                              |                                                                                                                                                                                                                                                                                                                          |
| Drilling techniques   | <ul> <li>Drill type (eg core, reverse circulation,<br/>open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details<br/>(eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core<br/>is oriented and if so, by what method,<br/>etc).</li> </ul>                                                                                                                                                                                                                                                                                              | <ul> <li>RC drilling techniques were used.</li> <li>Diamond drilling is HQ size</li> </ul>                                                                                                                                                                                                                               |
| Drill sample recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative<br/>nature of the samples.</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                        | <ul> <li>RC drilling sample recoveries are considered to be high</li> <li>Core recoveries are generally at 100% except for fault zones</li> </ul>                                                                                                                                                                        |
| Logging               | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                              | All drilling was qualitatively<br>geologically logged recording<br>lithology, mineralisation colour,<br>weathering and grain size.                                                                                                                                                                                       |

| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-sampling techniques and sample preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc, and whether</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Sample preparation was conducted<br/>at Northern Assay Laboratories in<br/>Pine Creek</li> <li>Samples were delivered to North</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                | <ul> <li>sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-halt sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Australian Laboratories at Pine<br/>Creek for analysis</li> <li>Samples are dried at 120 C for a<br/>minimum of four hours [or over-night<br/>if samples are excessively wet].<br/>Sample prep is jaw crushing whole<br/>sample through a Boyd double<br/>toggle jaw crusher to a nominal 2mm<br/>particle size, splitting 400 gram<br/>through a jones riffle splitter and fine<br/>pulverising to 75 micron through an<br/>LM2 pulveriser. A barren washed<br/>creek sand as a barren flush is<br/>pulverised after every sample</li> <li>Total Graphitic Carbon is analysed<br/>with a weak acid digestion followed<br/>by a 420°C roast and then final<br/>analysis in a CS analyser</li> <li>A suite of multi-elements was also<br/>assayed using a 4-acid digest</li> </ul> |
| Quality of assay data and<br>laboratory tests  | <ul> <li>The nature, quality and appropriateness<br/>of the assaying and laboratory<br/>procedures used and whether the<br/>technique is considered partial or total.</li> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc, the<br/>parameters used in determining the<br/>analysis including instrument make and<br/>model, reading times, calibrations</li> </ul>                                                                                                                                                                                            | <ul> <li>followed by ICP-MS</li> <li>Internal QAQC by the laboratory indicate no sampling or bias issues.</li> <li>The assay technique is considered appropriate for the style of mineralisation and results in a total analysis of graphitic carbon.</li> <li>Standards and field duplicates are submitted as part of the drilling program</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | <ul> <li>Nature of quality control procedures<br/>adopted (eg standards, blanks,<br/>duplicates, external laboratory checks)<br/>and whether acceptable levels of<br/>accuracy (ie lack of bias) and precision<br/>have been established.</li> </ul>                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Verification of sampling and assaying          | <ul> <li>The verification of significant<br/>intersections by either independent or<br/>alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay data</li> </ul>                                                                                                                                                                                                                         | <ul> <li>Assays have been verified by company geologists.</li> <li>Some diamond core holes have been drilled as twins to RC holes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Location of data points                        | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>Drill holes were initially surveyed with a hand held GPS with +/- 5m accuracy. After drilling Cross Solutions of Darwin surveyed the collar location with DGPS to close accuracy</li> <li>The project areas lies at the boundary between MGA zones 52 and 53 so GPS co-ordinates are sometimes reported in these different grids depending where drill holes lie. The default grid to use in computer software to enable all holes to be plotted on the same grid co-ordinates will be MGAZ52</li> </ul>                                                                                                                                                                                                                                                                          |

| Criteria                                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Data spacing and distribution                              | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish the<br/>degree of geological and grade<br/>continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation<br/>procedure(s) and classifications applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>     | <ul> <li>Drill spacing is designed on 200m spacing with about 50m spacing along drill lines. Some lines to the west of the project have been drilled at 50m spacing to assess shorter range variability in geology and grade</li> <li>The data at this stage is only being used to establish the width and orientation of the graphitic schists. Additional drilling will be required to estimate Mineral Resources</li> </ul> |  |
| Orientation of data in relation to<br>geological structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | Drilling is generally perpendicular to<br>the strike direction of then graphitic<br>schists.                                                                                                                                                                                                                                                                                                                                   |  |
| Sample security                                            | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | Samples are taken to the assay lab<br>in Pine Creek by Kingsland<br>personnel.                                                                                                                                                                                                                                                                                                                                                 |  |
| Audits or reviews                                          | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                           | <ul> <li>No audits or reviews of sampling<br/>techniques have been undertaken.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |  |

Section 2: Reporting of Leliyn Graphite Project Exploration Results

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | • The Leliyn Graphite Project is located on<br>tenements EL 31960 and EL 32152.<br>These tenements are 100% owned by<br>Kingsland Minerals Ltd. There are no<br>known encumbrances to conducting<br>exploration on these tenements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Exploration done by other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>There has been an extensive history of<br/>exploration for uranium and copper over<br/>the past 40 years. There has however<br/>been only limited work done focussed on<br/>graphite. Thundelarra Exploration (now<br/>Ora Gold Ltd) sampled some holes in<br/>2012 for graphite at their Hatrick copper<br/>prospect and Cleo uranium prospect.<br/>These samples indicated the presence of<br/>significant grade and thickness of graphite<br/>mineralisation measured as total graphitic<br/>carbon (TGC). In 2017 one diamond drill<br/>hole TALD001 was drilled into the<br/>graphitic schist and sampled for TGC.<br/>Significant gades and widths of graphite<br/>mineralisation were encountered.<br/>Samples from TALD001 were submitted<br/>to Pathfinder Exploration Pty Ltd for thin<br/>section petrographical analysis.</li> </ul> |

| Criteria                                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geology                                                                | Deposit type, geological setting and<br>style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Carbonaceous sediments of the Masson<br/>Formation have been contact<br/>metamorphosed by the Cullen Granites.<br/>This has metamorphosed carbon to<br/>graphite and converted shales to schists.</li> <li>This contact extends for about 20 km<br/>within Kingsland's tenement package.</li> </ul>                                                                                                 |
| Driff hole information                                                 | <ul> <li>A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> </ul>                                                                                                                                                                                                       | <ul> <li>Drining information is included in this announcement</li> <li>RC and core holes are surveyed downhole with a single shot camera. It is apparent that magnetic minerals, likely pyrrhotite, do interfere with azimuth readings. Obviously erroneous readings are disregarded</li> <li>Deeper diamond core holes are surveyed with a gyro tool to eliminate in impact of magnetic readings</li> </ul> |
|                                                                        | <ul> <li>hole length</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                              |
| Data aggregation methods                                               | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (e.g. cutting of high<br/>grades) and cut-off grades are usually<br/>Material and should be stated.</li> <li>Where aggregate intercepts<br/>incorporate short lengths of high grade<br/>results and longer lengths of low grade<br/>results, the procedure used for such<br/>aggregation should be stated and<br/>some typical examples of such<br/>aggregations should be shown in<br/>detail.</li> <li>The assumptions used for any<br/>reporting of metal equivalent values<br/>should be clearly stated.</li> </ul> | <ul> <li>Assays are reported as weighted average intersections.</li> <li>Intervals have been reported at a cut-off grade of 2% TGC with a maximum of 4m of internal dilution.</li> </ul>                                                                                                                                                                                                                     |
| Relationship between<br>mineralisation widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                     | • Drilling has been perpendicular to the strike direction. The true width of mineralisation will vary but is generally expected to be from 70% to 80% of the reported down-hole widths.                                                                                                                                                                                                                      |
| Diagrams<br>Balanced Reporting                                         | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> <li>Accuracy and quality of surveys used</li> </ul>                                                                                                                                                                                                                                                                                                                    | <ul> <li>Relevant diagrams have been included<br/>within the main body of text.</li> <li>The competent person deems the</li> </ul>                                                                                                                                                                                                                                                                           |
|                                                                        | to locate drill holes (collar and down-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reporting of these drill results to be                                                                                                                                                                                                                                                                                                                                                                       |

| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | <ul> <li>hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.</li> </ul>                                                              | balanced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other substantive<br>exploration data | Other exploration data, if meaningful<br>and material, should be reported<br>including (but not limited to): geological<br>observations; geophysical survey<br>results; geochemical survey results;<br>bulk samples - size and method of<br>treatment; metallurgical test results;<br>bulk density, groundwater,<br>geotechnical and rock characteristics;<br>potential deleterious or contaminating<br>substances. | <ul> <li>RC and diamond drilling will progress at Leliyn ultimately aimed at the estimation of a Mineral Resource.</li> <li>Diamond drill samples will be used for metallurgical test work to determine flotation characteristics and the suitability of Leliyn graphite for battery end uses.</li> <li>There is no other substantive data to report. Exploration at Leliyn is at an early stage with only limited historical exploration data relevant to graphite mineralisation.</li> </ul> |
| Further work                          | <ul> <li>The nature and scale of planned<br/>further work (e.g. tests for lateral<br/>extensions or depth extensions or<br/>large- scale step-out drilling).</li> <li>Diagrams clearly highlighting the<br/>areas of possible extensions, including<br/>the main geological interpretations and<br/>future drilling areas, provided this<br/>information is not commercially<br/>sensitive.</li> </ul>              | Diamond drill samples will be used for<br>metallurgical test work to determine<br>flotation characteristics and the suitability<br>of Leliyn graphite for battery end uses.                                                                                                                                                                                                                                                                                                                    |