

ASX ANNOUNCEMENT

ASX: **KNG** kingslandminerals.com.au

16 August 2023

Leliyn Graphite Project, Northern Territory

Leliyn emerging as a major discovery with more outstanding wide, high-grade intersections

The results, which continue to be in line with the world-scale Exploration Target, will form part of the maiden Resource; Mineralisation is open, drilling ongoing and more assays pending

<u>Highlights</u>

- Latest assays show Leliyn has high grades, big widths and abundant exploration upside with mineralisation open at depth and along the 20km-long graphitic schist unit
- The results consistently grade more than 10% Total Graphitic Carbon (TGC) with wide intersections pointing to substantial tonnages
- Latest TGC assays include:
 - o 158m @ 10.1 % from 16m (LERC_17)
 - 128m @ 8.6 % from 45m (LERC_18)
 - **inc**l 86m @ 10.9% from 87m

and previously released intersections¹:

- 137m @ 7.3% from 13m (LERC_13)
 - incl 47m @ 10.9% from 69m
- 139m @ 7.0 % from 9m (LERC_14)
 - incl 63m @ 10.0% from 107m
- o 130m @ 6.3 % from 0m (LERC_11)
 - incl 21m @ 11.3% from 93m
- The results are consistent with Leliyn's large Exploration Target of 200-250Mt at 8-11% Total Graphitic Carbon for 16-27Mt of contained graphite²
- Strong near term newsflow with maiden resource drilling ongoing, diamond drilling assays
 pending and metallurgical test samples planned to be submitted in the current quarter

¹ Refer to ASX announcement 'Extremely wide intersections with high grades at Leliyn' released on 24 July 2023

² Refer to ASX announcement 'Graphite Exploration Target' released by KNG on March 21 2023. The potential quantity and grade of an exploration target is conceptual in nature, there has been insufficient exploration to determine a mineral resource and there is no certainty that further exploration work will result in the determination of mineral resources or that the production target itself will be realised.

Kingsland Minerals Ltd (ASX:KNG) is pleased to announce more exceptional assays pointing to a substantial high-grade graphite discovery at its Leliyn Project in the Northern Territory. These latest results are in line with the widths and grades of previous drilling and are also in line with the exploration target.

Kingsland Minerals Managing Director, Richard Maddocks said

"These latest results further reinforce the potential of Leliyn. The thick, high grade graphite intersections from surface really set this deposit apart. The drilling keeps extending the grade, strike and tonnage potential of Leliyn. Drilling is continuing and I'm looking forward to updating the market with more assay results. Metallurgical test-work samples will be submitted this quarter and we are expecting thin section petrographic analyses soon."

Table 1 presents the results received to date for the RC drilling. No diamond core assays have yet been returned. Holes LERC_11, 13, 14, 17 and 18 are representative of the width and grade of the graphitic schist on the western side of the target zone (see Figure 1, cross-sections A, B,C and D). As expected, there is variation in the grade as indicated in holes LERC_09, 12 and 16. These holes have intersected the 'edges' of the graphitic schist zone and therefore have returned lower grades than holes intersecting the central parts of the schist.

Drilling on the eastern side (Figure 1, cross-sections F and G) has also intersection wide graphite mineralisation. Several RC holes missed or only partially intersected the graphitic schist so additional drilling will be completed to infill this area.

Figure 1 shows a plan view of the drilling area. Drilling has been focussed on the western and eastern zones with no drilling in the central zone to avoid interaction with stock dams during the dry season. This area will be drilled later after consultation with the station owner. Figures 2 to 8 are updated cross-section showing the latest drilling results.

Five diamond core holes have now been completed on the western side of the target zone. Once all assays have been received and the thin section petrography completed on these holes, composite samples for metallurgical test-work will be collected. It is important that the characteristics of the graphite mineralisation are understood before samples are selected for metallurgical test-work. It is expected that this will be completed and metallurgical samples submitted during the current September quarter. Initial work will focus on flotation characteristics to assess flotation concentrate grades and recoveries.

RC and Diamond core drilling will continue to focus on infill drilling to provide sufficient drill spacing to estimate a Mineral Resource.

	5	2011.911 0	•	,		
Hole	From	То	Length	% TGC		
LEDDRC_01	25	54	29	9.30		
incl	40	54	14	12.99		
LERC_02	41	60	19	8.15		
incl	42	52	10	11.69		
LERC_06	0	25	25	10.10		
incl	11	23	12	11.48		
LERC_08	0	46	46	8.33		
incl	0	18	18	11.79		
	55	84	29	10.83		
LERC_09	67	84	17	2.44		
	101	113	12	2.33		
LERC_10	0	124	124	4.32		
incl	5	37	32	7.40		
and	59	124	65	3.15		
LERC_11	0	130	130	6.28		
incl	1	30	29	8.92		
and	93	114	21	11.27		
LERC_12		N	SI			
LERC_13	13 🧹	150	137	7.29		
incl	69	116	47	10.85		
and	138	150	12	11.23		
LERC_14	48	187	1 <mark>39</mark>	6.97		
incl	107	170	63	10.04		
	200	20 4	4	8.93		
LERC_15	9	78	69	7.97		
LERC_16	2	5	3	2.71		
LERC_17	16	174	158	10.13		
LERC_18	45	173	128	8.58		
incl	87	173	86	10.90		
LERC_19	8	91	83	5.92		
LERC_20	11	22	11	5.27		
LERC_21	0	78	78	5.19		
incl	57	71	14	8.71		
LERC_22	42	114	72	4.71		
LERC_23	assays pending					
LERC_24	NSI					
LERC_25	4	21	17	3.79		
LERC_26	2	7	5	4.14		
	33	34	1	2.18		
L			ı —			

Table 1 :Assay details Leliyn Graphite Project

Intersections are reported at a 2% TGC cut-off grade with a maximum of 4 consecutive meters of internal dilution.

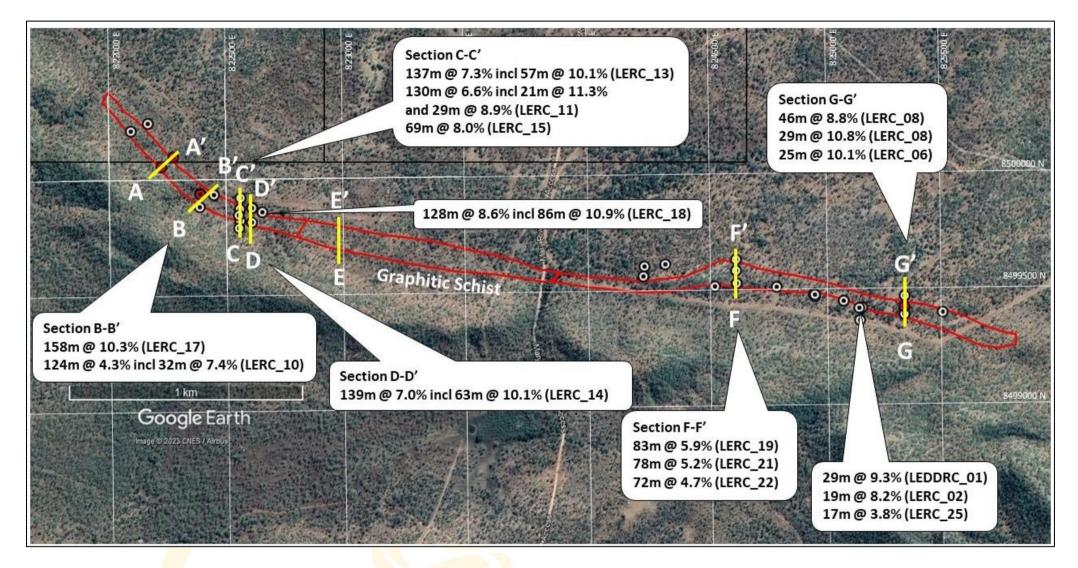


Figure 1: Plan showing location of drillholes and cross sections

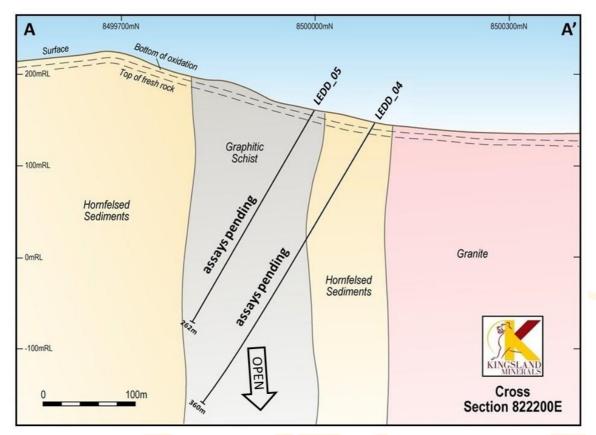


Figure 2: Cross section A-A' looking north-west at approximate easting 822200 (MGAZ52)

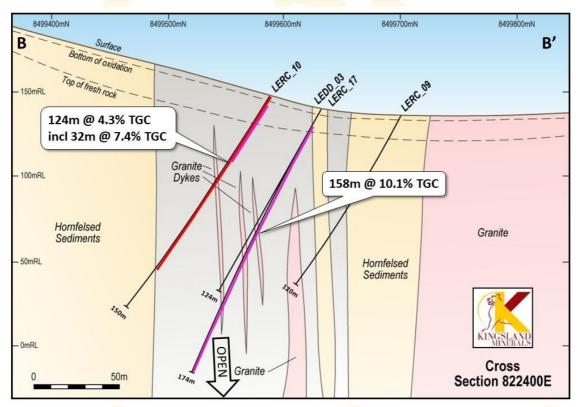


Figure 3: Cross section B-B' looking north-west at easting 822400 (MGAZ52)

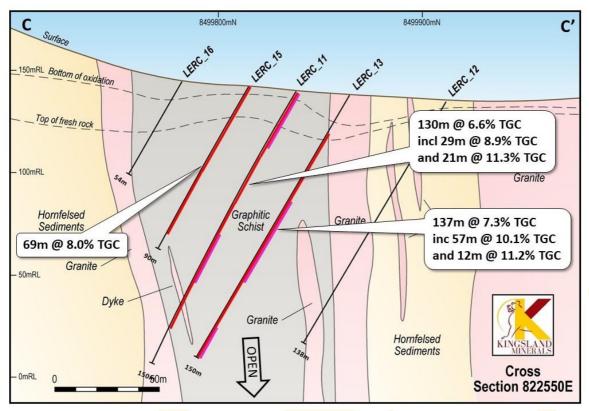


Figure 4: Cross section C-C' looking west at easting 822550 (MGAZ52)

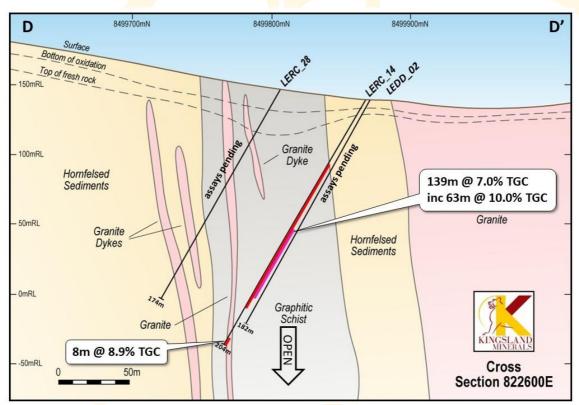


Figure 5: Cross section D-D' looking west at easting 822600 (MGAZ52)

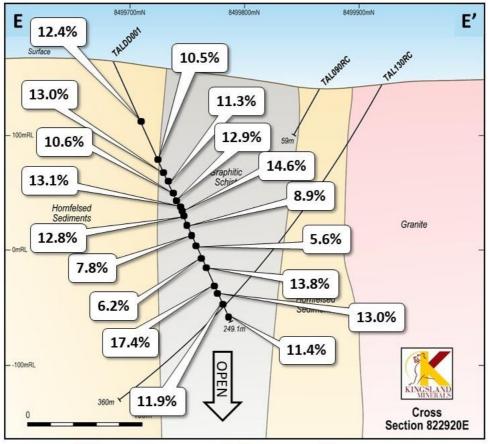


Figure 6: Cross section E-E' looking west at easting 822920 (MGAZ52)

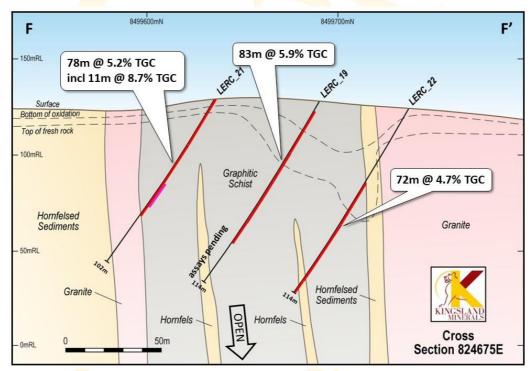


Figure 7: Cross section F-F' looking west at easting 824675 (MGAZ52)

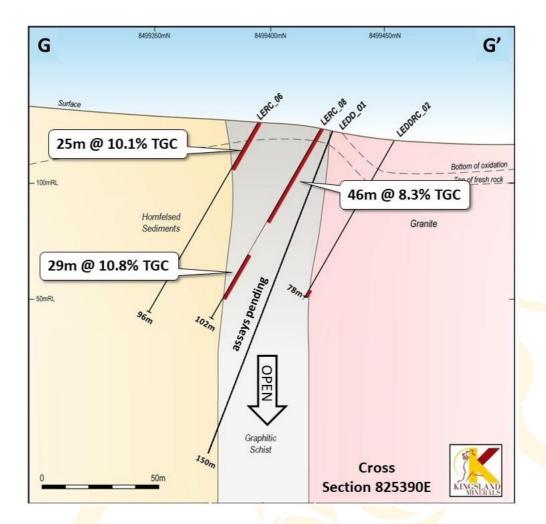


Figure 8: Cross section G-G' looking west at easting 825390 (MGAZ52)

Table 2 presents the individual assay data for RC hole LERC_17 (refer to cross-section in Figure 3). The assays are consistent with variations possibly due to narrow felsic intrusives and/or slight variation in metamorphic intensity of the graphitic schist. This hole has intersected wide, high grade graphite mineralisation and, along with other drilling, confirms the tonnage potential of Leliyn. LERC_17 has been twinned with a diamond hole LEDD_03 which will provide material for metallurgical test-work. RC hole LERC_14, which returned 139m @ 7.0% TGC, including 63m @ 10.0% TGC, has been twinned with diamond hole LEDD_02, which will also provide material for metallurgical analysis. LEDD_02 and LEDD_03 have been completed and submitted for assay and thin section petrographic analysis.

Table 2: RC	Hole LERC	_17 Assay	Results
-------------	-----------	-----------	---------

from (m)	to (m)	% TGC	from (m)	to (m)	% TGC	from (m)	to (m)	% TGC	from (m)	to (m)	% TGC	from (m)	to (m)	% TGC
0	1	0.67	35	36	5.75	70	71	12.17	105	106	11.05	140	141	8.33
1	2	0.46	35	30	8.29	70	72	10.97	105	100	12.95	140	141	9.51
2	3	0.40	37	38	12.69	72	73	11.88	100	107	14.66	141	142	6.62
3	4	0.22	38	39	8.52	73	74	11.00	107	109	7.07	142	143	7.20
4	5	0.22	39	40	13.44	74	75	10.58	100	110	10.45	143	145	4.98
5	6	0.20	40	41	12.94	75	76	12.19	110	111	12.86	145	146	7.39
6	7	0.26	40	42	13.80	76	77	9.51	110	112	7.39	145	140	8.04
7	8	0.26	42	43	10.49	77	78	10.39	112	113	4.12	147	148	9.50
8	9	0.28	43	44	12.02	78	79	11.78	113	114	12.91	148	149	9.84
9	10	0.26	44	45	10.47	79	80	11.88	114	115	14.37	149	150	9.93
10	11	0.15	45	46	10.50	80	81	12.00	115	116	12.91	150	151	9.95
11	12	0.13	46	47	8.68	81	82	11.11	116	117	12.73	151	152	10.36
12	13	0.13	47	48	8.91	82	83	9.94	117	118	11.58	152	153	11.08
13	14	0.17	48	49	7.08	83	84	12.05	118	119	11.37	153	154	10.94
14	15	0.23	49	50	4.77	84	85	12.57	119	120	12.00	154	155	11.46
15	16	0.45	50	51	9.47	85	86	13.55	120	121	12.97	155	156	12.06
16	17	2.35	51	52	10.52	86	87	11.95	121	122	9.34	156	157	8.63
17	18	4.41	52	53	12.19	87	88	11.48	122	123	11.72	157	158	7.92
18	19	1.81	53	54	11.82	88	89	11.66	123	124	8.12	158	159	12.36
19	20	3.21	54	55	10.67	89	90	11.77	124	125	9.98	159	160	10.26
20	21	3.07	55	56	6.45	90	91	11.48	125	126	11.67	160	161	9.87
21	22	4.34	<mark>56</mark>	57	6.57	91	92	12.57	126	127	13.73	161	162	11.11
22	23	3.91	<mark>5</mark> 7	58	6.82	92	<mark>9</mark> 3	12.10	127	128	13.27	162	163	10.83
23	24	4.66	58	59	9.46	93	<mark>94</mark>	9.38	128	<mark>1</mark> 29	11.95	163	164	10.26
24	25	5.4 <mark>0</mark>	59	60	11.99	94	9 <mark>5</mark>	6.04	129	130	12.62	164	165	11.22
25	26	3.7 <mark>0</mark>	60	61	10.49	95	96	8.98	130	131	12.75	165	166	10.87
26	27	9 <mark>.36</mark>	61	62	12.63	96	97	8.85	131	132	11.74	166	167	9.46
27	28	6 <mark>.39</mark>	62	63	10.98	97	98	8.91	132	133	12.67	167	168	9.20
28	29	9.05	63	64	12.40	98	99	7. <mark>82</mark>	133	134	12.53	168	169	11.99
29	30	12.90	64	65	11.44	99	100	<mark>9.7</mark> 5	134	135	11.74	169	170	11.98
30	31	15.42	65	66	10.24	100	101	8.25	135	136	11.24	170	171	11.18
31	32	1 <mark>3.4</mark> 3	66	67	10.50	101	102	10.10	136	137	11.29	171	172	10.63
32	33	1 <mark>0.9</mark> 0	67	68	10.57	102	103	10.16	137	138	11.67	172	173	9.24
33	34	9 <mark>.75</mark>	68	69	10.16	103	104	10.42	138	139	10.35	173	174	9.70
34	35	12 <mark>.27</mark>	69	70	11.82	104	10 <mark>5</mark>	10.50	139	140	9.98			EOH

Hole	Туре	East MGA52	North MGA52	RL	Dip	Azi	Depth	Assays	
LEDD_01	DDH	825395	8499428	124	-70	195	149.6	assays pending	
LEDD_02	DDH	822614	8499882	139	-60	190	182.39	assays pending	
LEDD_03	DDH	822393	8499941	139	-60	220	124	assays pending	
LEDD_04	DDH	822280	8500099	147	-60	335	362.56	assays pending	
LEDD_05	DDH	822229	8500058	161	-60	335	262	assays pending	
LEDD_06	DDH	824678	8499593	128	-60	180	155	assays pending	
LEDDRC_01	RC	825215	8499428	123	-60	180	54	assays returned	
LEDDRC_02	RC	825339	8499459	118	-60	180	78	not assayed	
LERC_01	RC	824851	8499519	119	-60	180	90	not assayed	
LERC_02	RC	825202	8499426	124	-60	180	72	assays returned	
LERC_03	RC	825014	8499484	124	-60	180	54	not assayed	
LERC_04	RC	825208	8499375	129	-60	180	84	not assayed	
LERC_05	RC							not yet drilled	
LERC_06	RC	825395	84993 <mark>98</mark>	126	-60	180	96	assays returned	
LERC_07	RC	824587	<mark>849952</mark> 4	138	-60	180	36	not as <mark>say</mark> ed	
LERC_08	RC	825395	8499426	124	-6 <mark>0</mark>	180	102	assays re <mark>tu</mark> rned	
LERC_09	RC	822455	8499945	136	- <mark>60</mark>	225	120	assays r <mark>et</mark> urned	
LERC_10	RC	822 <mark>396</mark>	8499893	147	-60	225	150	assays ret <mark>urned</mark>	
LERC_11	RC	<mark>822</mark> 557	84998 <mark>50</mark>	140	-60	180	150	assays r <mark>eturne</mark> d	
LERC_12	RC	<mark>8</mark> 22565	8499 <mark>923</mark>	135	-60	180	138	assays returned	
LERC_13	RC	822562	84998 <mark>7</mark> 6	138	-6 <mark>0</mark>	185	150	assays returned	
LERC_14	RC	822614	84998 <mark>80</mark>	139	-60	180	204	assays returned	
LERC_15	RC	822563	8499826	141	-60	180	90	assays returned	
LERC_16	RC	822562	8499795	145	-60	185	54	assays returned	
LERC_17	RC	822391	8499943	139	-60	235	174	assays returned	
LERC_18	RC	822656	8499866	139	-60	184	174	assays returned	
LERC_19	RC	824678	8499590	128	-60	187	114	assays returned	
LERC_20	RC	825009	8499488	124	-60	180	42	assays returned	
LERC_21	RC	824680	8499536	129	<mark>-6</mark> 0	180	102	assays returned	
LERC_22	RC	824678	8499637	124	-60	185	114	assays returned	
LERC_23	RC	824282	8499570	131	-60	185	60	assays returned	
LERC_2 <mark>4</mark>	RC	824287	8499612	<mark>12</mark> 9	-60	185	60	assays returned	
LERC_25	RC	825014	8499477	125	-60	180	60	assays returned	
LERC_26	RC	824376	8499620	131	-60	180	78	assays returned	
LERC_27	RC	825136	8499457	126	-60	180	60	not assayed	
LERC_28	RC	822613	8499819	146	-60	180	174	assays pending	
LERC_29	RC	822173	8500242	149	-60	215	174	assays pending	
LERC_30	RC	822100	8500210	161	-90	0	132	assays pending	

Table 3: Details of Leliyn Drilling

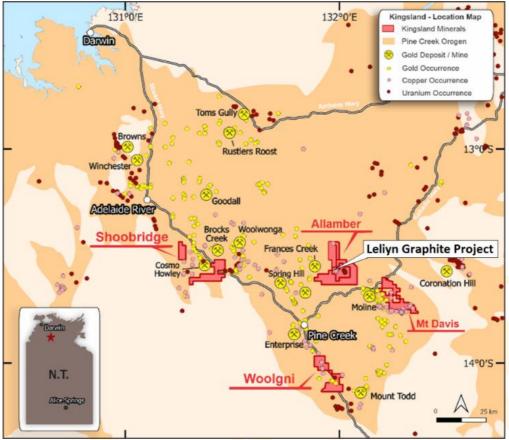


Figure 9: Kingsland Minerals Northern Territory Exploration Projects

THIS ANNOUNCEMENT HAS BEEN AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

About Kingsland Minerals Ltd

Kingsland Minerals Ltd is an exploration company with assets in the Northern Territory and Western Australia. Kingsland's focus is exploring the Leliyn Graphite Project in the Northern Territory. The Company is confident that Leliyn has significant potential, as shown by the substantial Exploration Target of 200-250 million tonnes grading 8-11 per cent Total Graphitic Carbon (TGC) for contained graphite of 16-27Mt³. The Exploration Target is based on a graphitic schist measuring 5km long, 200m deep and 100m wide. The 5km strike length of the schist sits within a longer 20km-long graphitic schist. The initial exploration program will focus on the 5km stretch which hosts the Exploration Target. This will underpin a maiden JORC Resource. Kingsland believes there is also significant exploration potential within the remaining 15km of graphitic schist.

³ The potential quantity and grade of an exploration target is conceptual in nature, there has been insufficient exploration to determine a mineral resource and there is no certainty that further exploration work will result in the determination of mineral resources or that the production target itself will be realised

FOLLOW US ON TWITTER: https://twitter.com/KingslandLtd

CAPITAL STRUCTURE Shares on issue: 58,299,300 Options on issue: 18,669,920

INVESTOR RELATIONS

Read Corporate Paul Armstrong Email: <u>info@readcorporate.com.au</u> Tel: +61 8 9388 1474

BOARD OF DIRECTORS

Mal Randall: Non-Executive Chairman Richard Maddocks: Managing Director Bruno Seneque: Director/Company Secretary Nicholas Revell: Non-Executive Director

SHAREHOLDER CONTACT

Bruno Seneque Email: <u>info@kingslandminerals.com.au</u> Tel: +61 8 9381 3820

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Richard Maddocks, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Richard Maddocks has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Richard Maddocks consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Richard Maddocks is a full time employee of Kingsland Minerals Ltd and holds securities in the company.

The information in this announcement referring to the Leliyn Exploration Target is extracted from the report entitled 'Graphite Exploration Target' created on March 21 2023 and available to view on <u>www.kingslandminerals.com.au</u>. or on the ASX website <u>www.asx.com.au</u> under ticker code KNG. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.'

JORC Tables

Section 1: Sampling Techniques and Data Leliyn Graphite Project

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual 	 RC drilling samples were collected as 1m intervals via a riffle splitter off the drill rig. Diamond core is cut in half
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling techniques were used. Diamond drilling is HQ size
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling sample recoveries are considered to be high Core recoveries are generally at 100% except for fault zones
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drilling was qualitatively geologically logged recording lithology, mineralisation colour, weathering and grain size.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. 	Sample preparation was conducted at Northern Assay Laboratories in Bins Oracle
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Pine Creek Samples were delivered to North Australian Laboratories at Pine Creek for analysis Samples are dried at 120 C for a minimum of four hours [or over-night if samples are excessively wet]. Sample prep is jaw crushing whole sample through a Boyd double toggle jaw crusher to a nominal 2mm particle size, splitting 400 gram through a jones riffle splitter and fine pulverising to 75 micron through an LM2 pulveriser. A barren washed creek sand as a barren flush is pulverised after every sample Total Graphitic Carbon is analysed with a weak acid digestion followed by a 420°C roast and then final analysis in a CS analyser
Quality of assay data and	The nature, quality and appropriateness	 analysis in a CS analyser Internal QAQC by the laboratory
Verification of sampling and assaying	 of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. 	 indicate no sampling or bias issues. The assay technique is considered appropriate for the style of mineralisation and results in a total analysis of graphitic carbon. Standards and field duplicates are submitted as part of the RC drilling program Assays have been verified by company geologists. Some diamond core holes have
Location of data points	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to 	 Been drilled as twins to RC holes RC holes were surveyed with a hand
	 locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 held GPS with +/- 5m accuracy. The project areas lies at the boundary between MGA zones 52 and 53 so GPS co-ordinates are sometimes reported in these different grids depending where drill holes lie. The default grid to use in computer software to enable all holes to be plotted on the same grid co-ordinates will be MGAZ52
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 Drill spacing is designed on 200m spacing with about 50m spacing along drill lines. Some lines to the west of the project have been drilled at 50m spacing to assess shorter range variability in geology and grade

Criteria	JORC Code explanation	Commentary
	Resource and Ore Reserve estimation procedure(s) and classifications applied.Whether sample compositing has been applied.	 The data at this stage is only being used to establish the width and orientation of the graphitic schists. Additional drilling will be required to estimate Mineral Resources
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling is generally perpendicular to the strike direction of then graphitic schists.
Sample security	The measures taken to ensure sample security.	 Samples are taken to the assay lab in Pine Creek by Kingsland personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews of sampling techniques have been undertaken.

Section 2: Reporting of Leliyn Graphite Project Exploration Results

Criteria JC Mineral tenement and land tenure status •	DRC Code explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 Commentary The Leliyn Graphite Project is located on tenements EL 31960 and EL 32152. These tenements are 100% owned by Kingsland Minerals Ltd. There are no known encumbrances to conducting exploration on these tenements.
	location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	tenements EL 31960 and EL 32152. These tenements are 100% owned by Kingsland Minerals Ltd. There are no known encumbrances to conducting
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There has been an extensive history of exploration for uranium and copper over the past 40 years. There has however been only limited work done focussed on graphite. Thundelarra Exploration (now Ora Gold Ltd) sampled some holes in 2012 for graphite at their Hatrick copper prospect and Cleo uranium prospect. These samples indicated the presence of significant grade and thickness of graphite mineralisation measured as total graphitic carbon (TGC). In 2017 one diamond drill hole TALD001 was drilled into the graphitic schist and sampled for TGC. Significant gades and widths of graphite mineralisation were encountered. Samples from TALD001 were submitted to Pathfinder Exploration Pty Ltd for thin section petrographical analysis.
Geology • Drill hole information •	Deposit type, geological setting and style of mineralisation. A summary of all information material to	 Carbonaceous sediments of the Masson Formation have been contact metamorphosed by the Cullen Granites. This has metamorphosed carbon to graphite and converted shales to schists . This contact extends for about 20 km within Kingsland's tenement package. Drilling information is included in this

Criteria	JORC Code explanation	Commentary
Criteria	 the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	announcement
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assays are reported as weighted average intersections. Intervals have been reported at a cut-off grade of 2% TGC with a maximum of 4m of internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• Drilling has been perpendicular to the strike direction. The true width of mineralisation will vary but is generally expected to be from 70% to 80% of the reported down-hole widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Relevant diagrams have been included within the main body of text.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading 	The competent person deems the reporting of these drill results to be balanced.

Criteria	JORC Code explanation	Commentary
	reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	metallurgical test work to determine flotation characteristics and the suitability of Leliyn graphite for battery end uses.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Diamond drill samples will be used for metallurgical test work to determine flotation characteristics and the suitability of Leliyn graphite for battery end uses.