

7 December 2022

All Assay Results Received - Cleo Uranium Project, NT Grades up to 2.9% U₃O₈

<u>Highlights</u>

- All assay results from maiden drilling campaign received.
- Significant results from program include:
 - o 16m @ 1,435 ppm U₃O₈ (CLRCD023 from 116m)
 - including 0.4m @ 29,197 ppm (2.9%) U₃O₈
 - o 47m @ 924 ppm U₃O₈ (CLRC017 from 53m)
 - including 14m @ 1,772 ppm (0.18%) U₃O₈
 - o 31m @ 962 ppm U₃O₈ (CLRC029 from 118m)
 - including 10m @ 2,134 ppm (0.21%) U₃O₈
 - **46m @ 535 ppm** U₃O₈ (CLRC015 from 62m)
 - including 5m @ 1,984 ppm (0.20%) U₃O₈
 - \circ **35m** @ **556 ppm** U₃O₈ (CLRC019 from 60m)
 - Including 7m @ 2,059 ppm (0.21%) including 1m @ 10,172 ppm (1.02%) U₃O₈
- Mineralisation remains open along strike and at depth.
- Plannin<mark>g f</mark>or future drilling programs commenced.

Kingsland Minerals Ltd (ASX:KNG) (Kingsland or Company) is pleased to announce that all assay results from the maiden drilling program at the Cleo Uranium Project have been received.

A total of 30 holes with 3,228m of Reverse Circulation (RC) drilling and 450 meters of diamond core drilling has been completed. The rigs have demobilised from site and site rehabilitation works are well advanced. The drilling campaign achieved its objectives of confirming historical drilling

intersections, providing additional information and data for a more detailed geological interpretation and extending known mineralisation along strike and at depth.

The completion of Kingsland Minerals' maiden drilling program and the receipt of all assays from the recent drilling has enabled a re-interpretation of geology and geological controls of uranium mineralisation to commence. This is a pre-cursor to planning additional drilling next year leading to a Mineral Resource Estimate later in 2023. Table 1 presents a summary of significant drilling intersections from the recent KNG drilling and historic drilling. A feature of these intersections are the broad zones of mineralisation with higher grade zones within them.

Hole	from	to	width	U3O8 ppm
CLRC017	53	100	47	924
incl	62	76	14	1,772
TAL0107RC	58	107	49	787
incl	78	95	17	1,286
CLRC029	118	161	43	751
incl	131	141	10 🦯	2,134
TAL079RC	86	109	23	1,318
incl	102	107	5	3,169
TAL <mark>062R</mark> C	97	139	42	611
inc	99	107	8	1,579
CLRC015	62	108	46	535
incl	69	70	1	1,076
incl	77	79	2	1,958
incl	90	9 <mark>5</mark>	5	1,984
incl	91	9 <mark>2</mark>	1	<mark>4,</mark> 394
CLRCD023	115.86	13 <mark>2</mark>	16.14	1 <mark>,</mark> 435
incl	120.63	121	0.37	29,197
incl	127	130.68	3.68	2,160
TAL053RC	61	99	38	527
incl	78	87	9	1,457
CLRC019	60	95	35	556
incl	62	69	7	2,059
incl	62	63	1	10,172
incl	68	69	1	2,002
TAL0108RC	70	88	18	932
incl	82	86	4	2,600
TAL078RC	98	117	19	829
incl	98	102	4	2,857
TAL063RC	77	98	21	682
incl	88	97	9	1,055
CLRC022	61	82	21	471
incl	67	68	1	1,622
incl	74	75	1	1,971
incl	79	80	1	1,234

 Table 1: Significant Drill Intersections from current and historic drilling

Results reported at a cut-off grade of 100ppm U_3O_8 with a maximum of 2m contiguous internal dilution

Diamond drilling completed by Kingsland shows that the higher grade uranium intersections are generally controlled by the position and possibly orientation of granitic intrusions. The contact between the sedimentary Masson Formation and the Cullen Granite batholith provides an eastern contact constraining uranium mineralisation. At Cleo, the Masson Formation generally consists of a series of graphitic, schistose sediments. These graphitic sediments have been intruded by a series of later felsic/granitic dykes varying in downhole width from centimetres to several meters. There appears to be several intrusion events with variation in grain size, mineralogy and orientation distinguishing them.

Table 2 shows the mineralised interval in diamond drill hole CLRCD023 and Figures 1 and 2 illustrate the mineralisation in hole CLRCD023. The samples were assayed for uranium and this has been converted to U_3O_8 by applying a factor of 1.179.

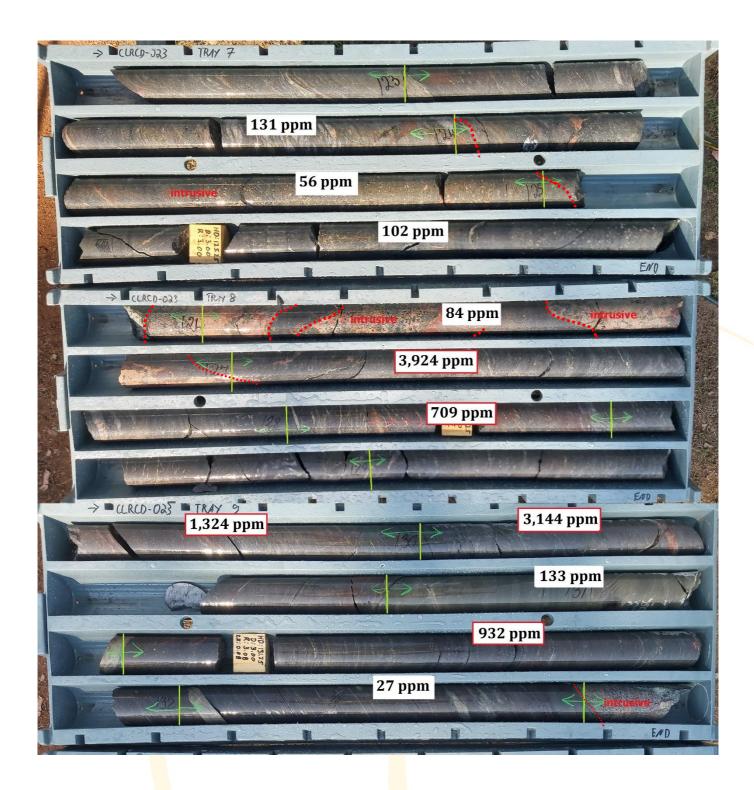

					U₃O ₈
Hole	From	То	Width	U ppm	ppm
CLRCD023	114	115.05	1.05	76	90
CLRCD023	<mark>115</mark> .05	115.48	0.43	39	46
CLRCD023	115.48	115. <mark>86</mark>	0.38	29	34
CLRCD023	115.86	116.6	0.74	184	217
CLRCD023	116.6	117	0.40	4,409	5,198
CLRCD023	117	117.62	0.62	64	75
CLRCD023	117.62	118.55	0.93	40	47
CLRCD023	118.55	119	0.45	191	225
CLRCD023	119	120	1.00	78	92
CLRCD023	120	120.63	0.63	595	702
CLRCD023	120.63	121	0.37	24,764	29,197
CLRCD023	121	122	1.00	94	111
CLRCD023	122	123	1.00	119	141
CLRCD023	123	124	1.00	111	131
CLRCD023	124	125	1.00	47	56
CLRCD023	125	126	1.00	87	102
CLRCD023	126	127	1.00	71	84
CLRCD023	127	128	1.00	3,329	3,924
CLRCD023	128	128.45	0.45	602	709
CLRCD023	128.45	129	0.55	298	351
CLRCD023	129	130	1.00	1,165	1,374
CLRCD023	130	130.68	0.68	2,666	3,144
CLRCD023	130.68	131.2	0.52	113	133
CLRCD023	131.2	132	0.80	791	932
CLRCD023	132	132.63	<mark>0.</mark> 63	23	27
Intersection	115.86	132	1 <mark>6.1</mark> 4	1,217	1,435

Table 2: Assay Results CLRCD023

The core photos in Figures 1 and 2 show the assay results and the location of intrusives (denoted by red dashed lines). There are a series of intrusives around 113m to 115m and then from 124m to 127m. Meter marks are written on the core. There is also an intrusive in tray 9 starting at 132.6m. Significant mineralisation is generally bordered by these intrusives with higher grade mineralisation contained in the graphitic schists.

Figure 1: Hole CRRCD023 Trays 4 to 6 (112.8m to 122.4m)

Figure 2: Hole CLRCD023 Trays 7 to 9 (122.4m to 132.7m)

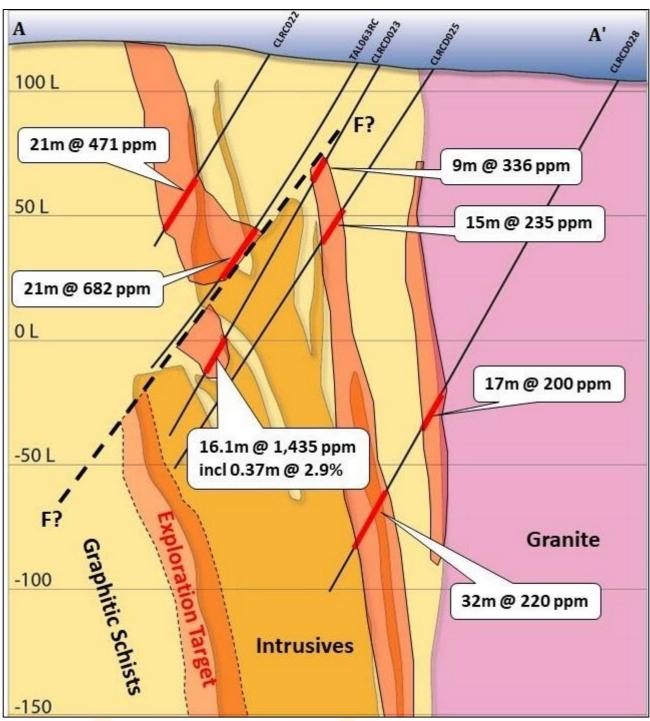


Figure 3: Hole CLRCD023 120.63*m* – 121.0*m* 2.92% *U*₃0₈

Figure 3 shows a close up of hole CLRCD023 120.63m – 121.0m. This interval assayed 29,197 ppm U_3O_8 or 2.92%. Within the red coloured interval are several areas of very dark mineralisation. This has been identified in this hand specimen as likely being Uraninite (UO₂). Uraninite, also known as pitchblende, is a significant ore of uranium. The red-orange material is likely various weathering products of uraninite containing other uranium oxides.

Higher grade mineralisation is also found in some intrusives. Figure 4 shows a cross section with geology and mineralisation. The mineralisation can be seen to generally mimic the intrusive/sediment contact but is also contained within the intrusive in places. There may be different phases of intrusions into the sediments and one or more of these phases may be associated with uranium mineralisation. Fault zones were intersected in the diamond drilling with a south-west dip interpreted. These faults may have dislocated geological contacts and/or mineralisation as shown in Figure 4. A target also exists for future exploration on the south-eastern or hanging-wall contact as shown in Figure 4.

Figure 5 is a plan view showing geology and Kingsland Minerals significant drill results. All the results are based on 1m assays. The focus for future exploration drilling is highlighted by the red dashed lines. These are areas with little or no previous drilling that represent excellent potential for extensions of the uranium mineralisation.

Figure 4: Cross section A-A' showing mineralisation and geology

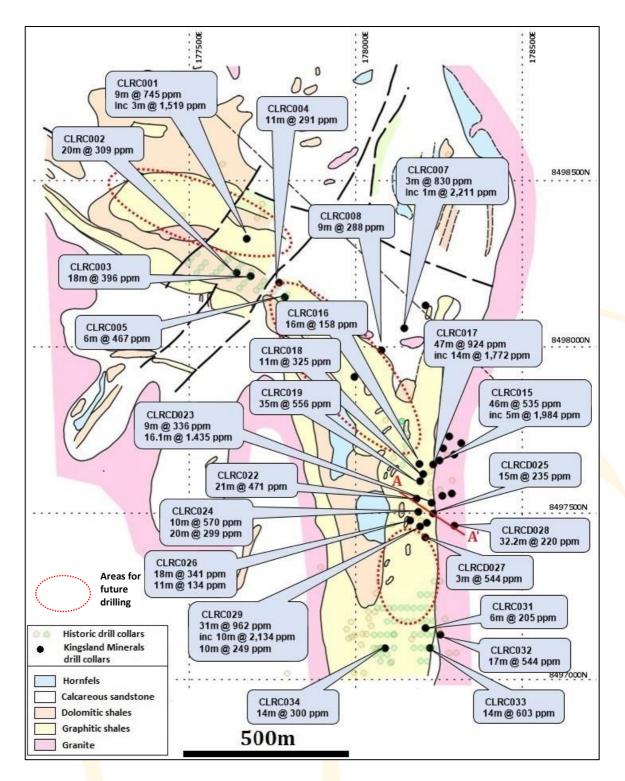


Figure 5: Plan o<mark>f C</mark>leo Uranium Project Drilling s<mark>ho</mark>wing U₃O₃ grades, intervals and location of cross se<mark>cti</mark>on

Table 3 shows all assay intersections at a cut-off grade of 100 ppm U_3O_8 . A maximum of two meters of contiguous internal dilution is included in the reported intervals. Widths are reported as downhole widths. The true thickness is expected to be approximately 70%-80% of the downhole width although the exact orientation of the mineralisation is yet to be determined. Table 4 presents full collar details of the current RC drilling program.

Hole Width From То U₃O₈ ppm **CLRC001** incl 1,519 **CLRC002** incl 1,340 **CLRC003** <mark>30</mark> 1,345 incl incl 1,667 and 1,153 CLRC004 CLRC005 CLRC007 incl 2,211 CLRC008 incl 1,321

Table 3: Cleo Uranium Project RC Drillhole Intervals >100 ppm U₃O₈

Hole	F	rom	То	Width	U₃O ₈ ppm
CLRC011		162	164	2	271
CLRC013		14	20	6	185
		64	72	8	307
		79	83	4	238
CLRC014					NSI
CLRC015		48	52	4	127
		62	108	46	535
	incl	69	70	1	1,076
	and	77	79	2	1,958
	and	90	95	5	1,984
	and	91	92	1	4,394
CLRC016		44	45	1	145
		48	52	4	456
		85	101	16	158
CLRC017		8	16	8	351
		19	20	1	117
		24	25	1	174
		31	32	1	242
		36	45	9	462
	incl	41	42	1	1,160
		53	100	47	924
	incl	53	54	1	1,777
	and	62	76	14	1,772
	incl	64	65	1	3,800
	and	91	94	3	1,575
		103	114	9	138
CLRC018		118 7	126 12	8	243 163
CLRCUIO		28	31	3	103
		38	39	1	175
		45	46	1	150
		51	57	6	149
		60	71	11	325
	incl	61	62	1	1,521
		103	105	2	142
		110	113	3	177
		119	120	1	122
CLRC019		15	21	6	157
		30	31	1	119
		38	50	12	158
		60	95	35	556
	incl	62	69	7	2,059
	and	62	63	1	10,172
	and	68	69	1	2,002
CLRC020					NSI
CLRC021					NSI

Hole	F	rom	То	Width	U₃O₅ ppm
CLRC022		34	35	1	215
		38	40	2	139
		54	57	3	670
		61	82	21	471
	incl	67	68	1	1,622
	incl	74	75	1	1,971
	incl	79	80	1	1,234
CLRCD023		36	38	2	376
01.102 010		46	55	9	336
		58	60	2	195
		115.86	132	16.14	1,435
	incl	120.63	121	0.37	29,197
	incl	120:05	130.68	3.68	2,160
	inci	135	136	1	113
		135	130	1	113
		142.4	143.57	1.17	113
CLRC024		44	45	1.17	115
CLNCU24		44	45	1	394
		51	40 65	14	394
	incl	54	55	14	2,411
	incl	57	58	1	1,377
		61	65	4	138
		68	78	10	570
	incl	68	69 101	1	3,472
		84	104	20	299
	incl	88	89	1	1,877
CLRCD025		64	79	15	235
		83	84	1	171
		139	139.64	0.64	131
		158.3	159	0.7	219
		175	176	1	112
CLRC026		22	40	18	341
		43	54	11	134
CLRCD027		88	89	1	110
		97	100	3	544
	incl	99	100	1	1,140
		105	106	1	642
		108.58	112.3	3.72	476
	incl	110.9	111.17	0.27	2,874
		120	122	2	392
		147	150	3	624
	incl	147	147.87	0.87	1,778
		165.8	167	1.2	1,065
		181	181.64	0 <mark>.6</mark> 4	137
CLRCD028		149	166	17	200
		170	171	1	117

Hole	F	rom	То	Width	U₃O₃ ppm
CLRCD028		177.43	177.64	0.21	1,887
		181	213.2	32.2	220
	incl	184	184.22	0.22	2,057
		185.23	185.35	0.12	3,902
CLRC029		70	71	1	198
		74	77	3	534
	incl	75	76	1	1,216
		82	83	1	102
		90	110	20	252
	incl	96	97	1	1,434
		118	149	31	962
	incl	131	141	10	2,134
	incl	132	134	2	4,280
		152	162	10	249
CLRC030					NSI
CLRC031		1	7	7	189
		28	31	3	198
		34	40	6	205
		44	45	1	150
		51	52	1	258
		60	62	2	207
CLRC032		72	7 <mark>3</mark>	1	250
	0	76	93	17	544
	incl	80	81	1	2,700
	and	91	92	1	3,643
		96	97	1	159
		111	113	2	350
CLRC033		11	12	1	174
		22	36	14	603
	incl	24	25	1	5,467
		41	42	1	162
		52	54	2	983
	incl	52	53	1	1,491
		60	69	9	236
		91	95	4	327
CLRC034		18	28	10	222
		32	46	14	300
		49	51	2	282
		54	57	3	159
		63	65	2	302
		98	100	2	121

incl - including

EOH – end of hole

NSI – No significant intercept Results reported at a cut-off grade of 100ppm U₃O₅ with a maximum of 2m contiguous internal dilution

	East	North		RC			Bearing
Hole	MGA53L	MGAS53L	RL	Depth	Core Tail	Dip	(mag)
CLRC001	177673	8498325	111	102		-60	218
CLRC002	177643	8498223	109	102		-60	218
CLRC003	177685	8498213	104	102		-60	218
CLRC004	177770	8498193	101	102		-60	218
CLRC005	177787	8498150	105	72		-60	218
CLRC007	178146	8498056	109	108		-60	225
CLRC008	178077	8497990	106	150		-60	225
CLRC011	178281	8497731	107	168		-60	300
CLRC013	178262	8497695	107	102		-60	300
CLRC014	178296	8497677	107	102		-60	300
CLRC015	178251	8497659	108	114		- <mark>60</mark>	<mark>3</mark> 00
CLRC016	178191	849764 <mark>8</mark>	117	102		-60	<mark>30</mark> 0
CLRC017	178233	849 <mark>7647</mark>	110	126		-60	<mark>30</mark> 0
CLRC018	178203	<mark>8497</mark> 618	115	120		-60	<mark>3</mark> 00
CLRC019	178193	<mark>849</mark> 7596	116	120		-60	<mark>30</mark> 0
CLRC020	178289 🦯	8497559	1 <mark>08</mark>	102		-60	300
CLRC021	17826 <mark>0</mark>	8497552	108	102		-60	300
CLRC022	178 <mark>183</mark>	8497544	1 <mark>15</mark>	90		-60	300
CLRCD023	17 <mark>822</mark> 8	8497531	1 <mark>0</mark> 9	102	<u>68.25</u>	-60	300
CLRC024	<mark>1781</mark> 88	8497504	113	126		-60	300
CLRCD025	<mark>178</mark> 233	8497499	108	102	<mark>88.5</mark>	-60	300
CLRC026	<mark>1</mark> 78164	8497478	115	60		-60	300
CLRCD027	<mark>1</mark> 78214	8497471	110	102	<mark>83.3</mark> 5	-60	300
CLRCD028	178296	8497463	106	60	209.82	-60	300
CLRC029	178193	8497460	111	162		-60	300
CLRC030	178209	8497427	109	1 <mark>02</mark>		-60	300
CLRC031	178210	8497155	100	<mark>1</mark> 02		-60	270
CLRC032	178254	8497135	98	114		-60	270
CLRC033	178223	8497095	99	102		-60	270
CLRC034	178088	8497094	102	108		-60	270

Table 4: Cleo Uranium Project Hole Details

Holes CLRC006, CL<mark>RC</mark>009, CLRC010, CLRC012 were not drilled.

About Cleo Uranium Project

The Cleo Uranium Project is located within Kingsland's Allamber Project (Figure 6). The Allamber Project has been historically explored for uranium, copper and graphite. The project is located in the historic Pine Creek mining region where mining, predominantly for gold, has taken place since the 1870's. The project area is well serviced with sealed roads and other infrastructure and services that enable exploration programs to progress in a timely manner. There are no native title claims or determinations covering the project area.

Figure 6: Kingsland Minerals Northern Territory Exploration Projects

THIS ANNOUNCEMENT HAS BEEN AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

About Kingsland Minerals Ltd

Kingsland Minerals Ltd is an exploration company with assets in the Northern Territory and Western Australia. There are four project areas in the NT: Allamber, Woolgni, Shoobridge and Mt Davis. In additional Kingsland Minerals owns a nickel project at Lake Johnston in Western Australia. Kingsland's focus is on exploration and development of prospective uranium prospects at Allamber and Shoobridge in the Northern Territory. Following a successful listing on the ASX in June 2022 company details are as follows:

FOLLOW US ON TWITTER: <u>https://twitter.com/KingslandLtd</u>

CAPITAL STRUCTURE

Shares on issue: 37,389,840 Options (KNGO): 14,582,250

MEDIA

Stewart Walters Email: <u>stewart@marketopen.com.au</u>

SHAREHOLDER CONTACT

Bruno Seneque Email: <u>info@kingslandminerals.com.au</u> Tel: +61 8 9381 3820

BOARD OF DIRECTORS

Mal Randall: Non-Executive Chairman Richard Maddocks: Managing Director Bruno Seneque: Director/Company Secretary Nicholas Revell: Non-Executive Director

Competent Persons Statement

The information in this report that relates to Kingsland Minerals Exploration Results is based on information compiled by Mr David Princep, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Princep is an independent consultant employed by Gill Lane Consulting. Mr Princep has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Princep consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Reference to historical Exploration Results is from the report entitled 'Kingsland Prospectus' released on 9 June 2022 and available to view on the Kingsland Minerals website, <u>www.kingslandminerals.com.au</u> or the ASX website <u>www.asx.com.au</u> under the ticker code KNG. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.'

JORC Tables

Section 1: Sampling Techniques and Data Cleo Uranium Project

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques Drilling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Commentary RC drilling samples were collected as 1m intervals via a riffle splitter off the drill rig. In order to speed up the analysis process initial sampling of holes was undertaken on 4m composites. A composite sample was taken with a scoop from each 1m bagged interval and combined for analysis. Based on the results returned, sampling of the original 1m bagged intervals will be undertaken to confirm the actual distribution of mineralisation throughout the drill hole. Diamond core was sampled either as 1m intervals or on geological boundaries. A number of drill holes were downhole logged using a total count gamma tool in order to identify uranium mineralisation. The drill holes were logged open and a few days after drilling, as a result of radon build-up within the drill hole additional processing would be required in order to validate the quality of the downhole logging. Preliminary analysis of the log data indicates a reasonable correlation with the returned sample assays. The Cleo Uranium deposit was drilled with RC and Diamond Core drilling techniques. Diamond drilling has been completed in order to derive samples for assay and mineralogical analysis. Diamond drill holes will also enable a more detailed view on the actual orientation of mineralisation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Drilling recoveries were generally very good. Some zones of low recovery were encountered associated with voids or cavities but these were not common and are not considered to influence the overall sample quality.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of 	 All drilling was qualitatively geologically logged recording lithology, mineralisation colour, weathering and grain size. Some drill holes were logged using a downhole gamma and deviation tool. Radon build-up in the drill holes requires that additional processing be completed in order to derive a more reasonable radiometric grade.

Criteria	JORC Code explanation	Commentary
	the relevant intersections logged.	
Sub-sampling techniques and sample preparation	 the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A rig-based riffle splitter was used to extract a sub-sample of approximately 3-4kg. This sample will be submitted for assay based on mineralised intervals determined by four metre composite sampling. Some results reported in this announcement are based on four metre composites of the original one metre samples in order to improve assay laboratory turnaround and undertake preliminary identification of mineralised intervals. One metre samples have been submitted based on initial results from the four meter composite samples. Results from these one metre re-splits have been reported in this announcement. Diamond core was sampled using cut half core with intervals either 1m or based on geological contacts. A suite of elements were assayed at the North Australian Laboratories (NAL) in Pine Creek, NT. Jobs are sorted as per client sample submission, if any discrepancies client notified by email and job is set up as received. Samples are dried at 120 C for a minimum of four hours [or over-night if samples are excessively wet]. Sample prep is jaw crushing whole sample through a Boyd double toggle jaw crusher to a nominal 2mm particle size, splitting 400 gram through a jones riffle splitter and fine pulverising to 75 micron through an LM2 pulveriser. A barren washed creek sand as a barren flush is pulverised after every sample. Assay procedure is a four acids digest [MA4 acid HNO3/HCI/HCIO4/HF] leach of a 0.3 gram sample aliquot in a Teflon vessel to strong fumes of Perchloric acid. The leach residue is digested in conc HCI and diluted to volume with demineralised
Verification of sampling and assaying	intersections by either independent or	 water and mixed. The dilution factor is 50. U is read by ICP-MS. Each batch of 50 assays contains 40 samples, four CRM's, one reagent blank and five replicate control assays. CRM's used include Geostats and OREAS. All U assays above 400 ppm are checked and confirmed by a sodium peroxide fusion digest with an ICP-MS reading. A QAQC program of standards and duplicates was submitted with the drill
	 alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 samples. No twinned sample locations have been completed. Minor QAQC issues have been identified to date, once the drilling and assay program is completed all QAQC information will be compiled and reviewed. It is not expected that any of the issues identified will affect the results contained

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 in this announcement. No adjustments have been made to any of the assay data other than converting uranium to uranium oxide values using a standard factor of 1.17924. Hole collars were surveyed by Cross Solutions of Darwin using a differential GPS in MGA94 zone 53S datum. MGA is the Map Grid of Australia as applied to the Geocentric Datum of Australia (GDA). Accuracy is +/01m RC drillholes were downhole surveyed every 30m with a Reflex single shot Diamond holes are surveyed every 30m with a Boart Longyear TruShot. A limited number of drill holes were logged with a combination downhole deviation and total count gamma tool.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is variable. Areas of historic drilling are approximately 40m along strike where other areas are spaced at several hundred meters. Drilling spacing and distribution in some areas is expected to be sufficient for estimation of Mineral Resources when combined with existing drill hole information. The data presented in this announcement are based on one metre original samples or diamond core intervals. The original one metre samples have been submitted to the laboratory upon receipt of results for all of the four metre composites for RC samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling is generally perpendicular to the strike direction of mineralisation. No bias is considered to have been introduced through the drill hole direction or orientation. Diamond drilling has been completed and is expected to provide additional information regarding mineralisation orientation.
Sample security	The measures taken to ensure sample security.	Due to the proximity of the laboratory samples are collected and delivered to the assay laboratory by Kingsland Minerals personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews of sampling techniques have been undertaken.

Section 2: Reporting of Cleo Uranium Project Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Cleo Project is located on tenement EL 31960, which was granted in March 2019 and is valid until March 2025. This tenement is 100% owned by Kingsland Minerals Ltd. There are no known encumbrances to conducting exploration on this tenement.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Cleo Uranium Project was discovered in 1985 by Total Mining Australia Pty Ltd. Total Mining carried out an extensive exploration program including RC and diamond core drilling. Atom Energy drilled a program of RC holes in 2004-05 followed by Thundelarra Exploration with additional RC holes in 2011-14.
Geology	Deposit type, geological setting and style of mineralisation.	 The Cleo deposit to the north is located in a strongly folded syncline of Lower Proterozoic metasediments enclosed and intruded by the Cullen granite. The lithologies forming the syncline include a basal psammite, quartzites and sericite- chlorite schists. The unit is overlain by a thick sequence of carbonaceous shales which, when affected by faulting, become graphite and chlorite schists. The carbonaceous shale sequence contains interbedded dolomite lenses. The uppermost unit exposed at the Twin deposit is a coarse-grained quartzite which occupies the core of the syncline. The Twin deposit has been strongly faulted, with faults trending parallel to the axial plane of the syncline. These faults have become the loci of subsequent intrusion by the late phases of the Cullen granite. The uranium mineralisation is also concentrated within the faults. Mineralisation towards the south occurs higher in the stratigraphic sequence. A large proportion of the lower units of the syncline have been adsorbed into the Cullen granite, particularly in the west. Mineralisation is more widely spread through the stratigraphy.
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is 	Drilling information is included in the announcement in Table 4.

Criteria	JORC Code explanation	Commentary
	justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drilling results are reported on a length weighted average format. Holes have been reported at a cut-off of 100ppm U₃O₈ with a maximum of 3m of internal dilution. Metal equivalent values have not been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling has been perpendicular to the strike direction. The true width of mineralisation will vary but is generally expected to be from 70% to 80% of the reported down-hole widths. Mineralisation orientation, and therefore true width, will be investigated during the upcoming diamond drilling program.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Relevant diagrams have been included within the main body of text.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	 All received results to date have been reported. Hole locations have been surveyed to a high degree of accuracy by a surveyor using DGPS equipment The competent person deems the reporting of these drill results to be balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• The company has not completed any other exploration within the area to date. Previous companies have explored the area between 1985 and 2014 and this information was used in designing the drilling program. Historic information is publicly available through the STRIKE website.
Further work	• The nature and scale of planned	 Kingsland Minerals is currently planning

Criteria	JORC Code explanation	Commentary
	 extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	and along strike as illustrated in Figures 4